{"title":"暴露在高温下的AA5083装甲板强度退化","authors":"Scott D. Kasen, D. Tubbs","doi":"10.1115/1.4055052","DOIUrl":null,"url":null,"abstract":"\n The thermally-driven evolution of β-phase (Al3Mg2) and its impact on strength is explored for three different producers of aluminum alloy 5083-H131 used in armor applications. Specimens were exposed to 100°C air for periods of up to 30 days. Through a combination of optical microscopy and computational image analysis, the extent of matrix β and grain boundary β in the microstructure was assessed. Quasi-static tensile testing was also used to measure strength as a function of exposure time. It was found that a degradation in yield strength strongly correlates with the rapid emergence of matrix β-phase and not slowly evolving grain boundary β networks typical of a sensitized microstructure. The decrease in yield strength is attributed to the loss of the solid solution strengthening via matrix β-phase precipitation. This suggests that field exposure to solar radiation, ambient air, or engine/exhaust heat could lead to a loss in the level of ballistic protection afforded by the alloy even without a sensitized condition.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strength Degradation in AA5083 Armor Plate after Exposure to Elevated Temperatures\",\"authors\":\"Scott D. Kasen, D. Tubbs\",\"doi\":\"10.1115/1.4055052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The thermally-driven evolution of β-phase (Al3Mg2) and its impact on strength is explored for three different producers of aluminum alloy 5083-H131 used in armor applications. Specimens were exposed to 100°C air for periods of up to 30 days. Through a combination of optical microscopy and computational image analysis, the extent of matrix β and grain boundary β in the microstructure was assessed. Quasi-static tensile testing was also used to measure strength as a function of exposure time. It was found that a degradation in yield strength strongly correlates with the rapid emergence of matrix β-phase and not slowly evolving grain boundary β networks typical of a sensitized microstructure. The decrease in yield strength is attributed to the loss of the solid solution strengthening via matrix β-phase precipitation. This suggests that field exposure to solar radiation, ambient air, or engine/exhaust heat could lead to a loss in the level of ballistic protection afforded by the alloy even without a sensitized condition.\",\"PeriodicalId\":15700,\"journal\":{\"name\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Materials and Technology-transactions of The Asme\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055052\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4055052","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Strength Degradation in AA5083 Armor Plate after Exposure to Elevated Temperatures
The thermally-driven evolution of β-phase (Al3Mg2) and its impact on strength is explored for three different producers of aluminum alloy 5083-H131 used in armor applications. Specimens were exposed to 100°C air for periods of up to 30 days. Through a combination of optical microscopy and computational image analysis, the extent of matrix β and grain boundary β in the microstructure was assessed. Quasi-static tensile testing was also used to measure strength as a function of exposure time. It was found that a degradation in yield strength strongly correlates with the rapid emergence of matrix β-phase and not slowly evolving grain boundary β networks typical of a sensitized microstructure. The decrease in yield strength is attributed to the loss of the solid solution strengthening via matrix β-phase precipitation. This suggests that field exposure to solar radiation, ambient air, or engine/exhaust heat could lead to a loss in the level of ballistic protection afforded by the alloy even without a sensitized condition.