一种在恶劣环境下实现微电子高性能和高可靠性的新型无卤聚对二甲苯

Q4 Engineering
Rakesh Kumar, F. Ke, Dustin England, Angie Summers, L. Young
{"title":"一种在恶劣环境下实现微电子高性能和高可靠性的新型无卤聚对二甲苯","authors":"Rakesh Kumar, F. Ke, Dustin England, Angie Summers, L. Young","doi":"10.4071/imaps.1120416","DOIUrl":null,"url":null,"abstract":"\n The rapid growth and adoption of microelectronics around the world has resulted in an increased awareness of potential environmental issues related to their use and disposal. Halogens, which have had various uses in microelectronics over the years, are known to emit toxic and corrosive gases during the disposal of electronic waste. Many organizations have applied pressure to the electronics industry to eliminate halogens completely (e.g., fluorine, chlorine, and bromine) from their products. Among the various efforts toward environmentally friendly products, making electronics completely halogen-free has gained significant attention, particularly in Asia and Europe. This initiative even impacts conformal coatings worldwide, on which most electronics rely for their long-term protection, reliability, and high performance against water and other corrosive harsh environments. Among the various coating options, the parylene family of conformal coatings offers beneficial properties to the microelectronics, improved over many properties offered by common epoxies, acrylics, urethanes, and silicones. Although parylene N is the only commercially available parylene that does not contain any halogens, its barrier performance against moisture and other corrosive chemicals is not quite as robust as the other parylenes. To meet the industry’s current and future requirements, a new halogen-free parylene, ParyFree®, has been developed. This study introduces a new parylene type to the microelectronics industry and shares the characterization and qualification results of ParyFree® parylene conformal coating for the protection, reliability, and robust performance of microelectronics. Testing on the new coating includes IPX water resistance, corrosion resistance, and qualification per IPC-CC-830B.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Halogen-Free Parylene for High Performance and Reliability of Microelectronics in Harsh Environments\",\"authors\":\"Rakesh Kumar, F. Ke, Dustin England, Angie Summers, L. Young\",\"doi\":\"10.4071/imaps.1120416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The rapid growth and adoption of microelectronics around the world has resulted in an increased awareness of potential environmental issues related to their use and disposal. Halogens, which have had various uses in microelectronics over the years, are known to emit toxic and corrosive gases during the disposal of electronic waste. Many organizations have applied pressure to the electronics industry to eliminate halogens completely (e.g., fluorine, chlorine, and bromine) from their products. Among the various efforts toward environmentally friendly products, making electronics completely halogen-free has gained significant attention, particularly in Asia and Europe. This initiative even impacts conformal coatings worldwide, on which most electronics rely for their long-term protection, reliability, and high performance against water and other corrosive harsh environments. Among the various coating options, the parylene family of conformal coatings offers beneficial properties to the microelectronics, improved over many properties offered by common epoxies, acrylics, urethanes, and silicones. Although parylene N is the only commercially available parylene that does not contain any halogens, its barrier performance against moisture and other corrosive chemicals is not quite as robust as the other parylenes. To meet the industry’s current and future requirements, a new halogen-free parylene, ParyFree®, has been developed. This study introduces a new parylene type to the microelectronics industry and shares the characterization and qualification results of ParyFree® parylene conformal coating for the protection, reliability, and robust performance of microelectronics. Testing on the new coating includes IPX water resistance, corrosion resistance, and qualification per IPC-CC-830B.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/imaps.1120416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/imaps.1120416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

微电子在世界各地的迅速发展和采用,使人们越来越意识到与微电子的使用和处置有关的潜在环境问题。卤素多年来在微电子领域有各种用途,在处理电子废物过程中会释放出有毒和腐蚀性气体。许多组织已经向电子工业施加压力,要求其产品中完全消除卤素(例如氟、氯和溴)。在各种环保产品的努力中,使电子产品完全无卤已经引起了极大的关注,特别是在亚洲和欧洲。这一举措甚至影响了全球范围内的保形涂层,大多数电子产品都依赖于保形涂层来获得长期保护、可靠性和抗水和其他腐蚀性恶劣环境的高性能。在各种涂层选择中,聚对二甲苯家族的保形涂层为微电子器件提供了有益的性能,比普通环氧树脂、丙烯酸树脂、聚氨酯和硅树脂提供的许多性能都得到了改进。虽然聚对二甲苯N是唯一一种商用的不含任何卤素的聚对二甲苯,但它对湿气和其他腐蚀性化学物质的阻隔性能不如其他聚对二甲苯那么坚固。为了满足行业当前和未来的要求,一种新的无卤聚对二甲苯,ParyFree®,已经开发出来。本研究向微电子行业介绍了一种新型的聚对二甲苯,并分享了ParyFree®聚对二甲苯保形涂层的特性和鉴定结果,用于微电子的保护,可靠性和坚固性。新涂层的测试包括IPX耐水性,耐腐蚀性和IPC-CC-830B的合格性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Halogen-Free Parylene for High Performance and Reliability of Microelectronics in Harsh Environments
The rapid growth and adoption of microelectronics around the world has resulted in an increased awareness of potential environmental issues related to their use and disposal. Halogens, which have had various uses in microelectronics over the years, are known to emit toxic and corrosive gases during the disposal of electronic waste. Many organizations have applied pressure to the electronics industry to eliminate halogens completely (e.g., fluorine, chlorine, and bromine) from their products. Among the various efforts toward environmentally friendly products, making electronics completely halogen-free has gained significant attention, particularly in Asia and Europe. This initiative even impacts conformal coatings worldwide, on which most electronics rely for their long-term protection, reliability, and high performance against water and other corrosive harsh environments. Among the various coating options, the parylene family of conformal coatings offers beneficial properties to the microelectronics, improved over many properties offered by common epoxies, acrylics, urethanes, and silicones. Although parylene N is the only commercially available parylene that does not contain any halogens, its barrier performance against moisture and other corrosive chemicals is not quite as robust as the other parylenes. To meet the industry’s current and future requirements, a new halogen-free parylene, ParyFree®, has been developed. This study introduces a new parylene type to the microelectronics industry and shares the characterization and qualification results of ParyFree® parylene conformal coating for the protection, reliability, and robust performance of microelectronics. Testing on the new coating includes IPX water resistance, corrosion resistance, and qualification per IPC-CC-830B.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信