Muhammad Adnan, Zulkurnain Abdul-Malek, Kwan Yiew Lau, Muhammad Tahir
{"title":"高压直流电缆绝缘用聚丙烯基纳米复合材料","authors":"Muhammad Adnan, Zulkurnain Abdul-Malek, Kwan Yiew Lau, Muhammad Tahir","doi":"10.1049/nde2.12018","DOIUrl":null,"url":null,"abstract":"<p>Cross-linked polyethylene (XLPE) is commonly used as an insulation material in power cables. Due to the recent advancements in the field of high voltage power transmission and distribution, there is a need for novel cable insulation materials that have high performance, recyclability and high working temperature as alternatives for the conventional XPLE-based insulation materials. Polypropylene (PP) shows excellent properties and has drawn considerable attention as a potential high voltage direct current (HVDC) insulation material. Therefore, the development of PP-based HVDC cable insulation with improved electrical, thermal and mechanical properties is important in discovering a potentially recyclable cable insulation material. Due to the remarkable development in the field of nanodielectrics, nanotechnology can be a promising solution for enhancing the overall dielectric properties of PP-based insulation materials. This review presents the important aspects of PP-based nanocomposites for HVDC cable insulation with a special focus on understanding the effects of various parameters of nanofillers on the dielectric properties of PP-based HVDC cable insulation. Based on the gathered information, future perspectives for improving the dielectric properties of PP-based nanocomposites for HVDC cable are provided.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12018","citationCount":"11","resultStr":"{\"title\":\"Polypropylene-based nanocomposites for HVDC cable insulation\",\"authors\":\"Muhammad Adnan, Zulkurnain Abdul-Malek, Kwan Yiew Lau, Muhammad Tahir\",\"doi\":\"10.1049/nde2.12018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cross-linked polyethylene (XLPE) is commonly used as an insulation material in power cables. Due to the recent advancements in the field of high voltage power transmission and distribution, there is a need for novel cable insulation materials that have high performance, recyclability and high working temperature as alternatives for the conventional XPLE-based insulation materials. Polypropylene (PP) shows excellent properties and has drawn considerable attention as a potential high voltage direct current (HVDC) insulation material. Therefore, the development of PP-based HVDC cable insulation with improved electrical, thermal and mechanical properties is important in discovering a potentially recyclable cable insulation material. Due to the remarkable development in the field of nanodielectrics, nanotechnology can be a promising solution for enhancing the overall dielectric properties of PP-based insulation materials. This review presents the important aspects of PP-based nanocomposites for HVDC cable insulation with a special focus on understanding the effects of various parameters of nanofillers on the dielectric properties of PP-based HVDC cable insulation. Based on the gathered information, future perspectives for improving the dielectric properties of PP-based nanocomposites for HVDC cable are provided.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12018\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Polypropylene-based nanocomposites for HVDC cable insulation
Cross-linked polyethylene (XLPE) is commonly used as an insulation material in power cables. Due to the recent advancements in the field of high voltage power transmission and distribution, there is a need for novel cable insulation materials that have high performance, recyclability and high working temperature as alternatives for the conventional XPLE-based insulation materials. Polypropylene (PP) shows excellent properties and has drawn considerable attention as a potential high voltage direct current (HVDC) insulation material. Therefore, the development of PP-based HVDC cable insulation with improved electrical, thermal and mechanical properties is important in discovering a potentially recyclable cable insulation material. Due to the remarkable development in the field of nanodielectrics, nanotechnology can be a promising solution for enhancing the overall dielectric properties of PP-based insulation materials. This review presents the important aspects of PP-based nanocomposites for HVDC cable insulation with a special focus on understanding the effects of various parameters of nanofillers on the dielectric properties of PP-based HVDC cable insulation. Based on the gathered information, future perspectives for improving the dielectric properties of PP-based nanocomposites for HVDC cable are provided.