{"title":"菠萝对采后施用ABA、壳聚糖的反应,以及对内部褐变严重程度和其他果实品质的抑制","authors":"David Chandra, S. E. Widodo, M. Kamal, S. Waluyo","doi":"10.32933/actainnovations.47.6","DOIUrl":null,"url":null,"abstract":"The shelf life of pineapple is significantly influenced by storage temperature and can be prolonged by maintaining an optimal temperature range of 5-12°C. However, there is still the problem of internal browning (IB) in the long-term storing of fresh harvest at cold temperatures. Postharvest application of 380 µM ABA (Abscisic Acid) to the crown, which is a source of ABA endogenous was found to suppress IB, while the concentration of 95 µM was not effective. Therefore, this research aimed to determine the response of GP3 and MD2 clones to postharvest treatment with the application of 50 mg/L ABA, chitosan and decrowning on the IB severity and other fruit qualities. The experimental design used a Completely Randomized Design with 3 factors of clone (GP3 and MD2), decrowning (crown and crownless), and fruit coating [chitosan 1%, ABA 50 mg/L, ABA + chitosan mix, and control (H2O)]. The fruits were kept at 7oC and observed at 0, 3, 6, 9, 16, 23, 30, and 37 days. The results showed that MD2 was significantly lower IB than GP3 and IB severity negatively correlated with ascorbic acid (AsA) content. MD2 had lower fruit weight loss (FWL) and skin dehydration (SD), higher AsA, soluble solid content (SSC), and SSC/titratable acidity (STA) ratios compared to GP3. The crown + ABA treatment decreased the IB severity of GP3, with a level of 0.75% after 37 days which was lower than crown + H2O by 9.17% and crownless + H2O by 8.42%. ABA treatment also showed higher SD and FWL, while AsA, SSC, TA, and STA were not different from the control.","PeriodicalId":32240,"journal":{"name":"Acta Innovations","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pineapple responses to postharvest applications of ABA, chitosan, and decrowning on the severity of internal browning and other fruit qualities\",\"authors\":\"David Chandra, S. E. Widodo, M. Kamal, S. Waluyo\",\"doi\":\"10.32933/actainnovations.47.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shelf life of pineapple is significantly influenced by storage temperature and can be prolonged by maintaining an optimal temperature range of 5-12°C. However, there is still the problem of internal browning (IB) in the long-term storing of fresh harvest at cold temperatures. Postharvest application of 380 µM ABA (Abscisic Acid) to the crown, which is a source of ABA endogenous was found to suppress IB, while the concentration of 95 µM was not effective. Therefore, this research aimed to determine the response of GP3 and MD2 clones to postharvest treatment with the application of 50 mg/L ABA, chitosan and decrowning on the IB severity and other fruit qualities. The experimental design used a Completely Randomized Design with 3 factors of clone (GP3 and MD2), decrowning (crown and crownless), and fruit coating [chitosan 1%, ABA 50 mg/L, ABA + chitosan mix, and control (H2O)]. The fruits were kept at 7oC and observed at 0, 3, 6, 9, 16, 23, 30, and 37 days. The results showed that MD2 was significantly lower IB than GP3 and IB severity negatively correlated with ascorbic acid (AsA) content. MD2 had lower fruit weight loss (FWL) and skin dehydration (SD), higher AsA, soluble solid content (SSC), and SSC/titratable acidity (STA) ratios compared to GP3. The crown + ABA treatment decreased the IB severity of GP3, with a level of 0.75% after 37 days which was lower than crown + H2O by 9.17% and crownless + H2O by 8.42%. ABA treatment also showed higher SD and FWL, while AsA, SSC, TA, and STA were not different from the control.\",\"PeriodicalId\":32240,\"journal\":{\"name\":\"Acta Innovations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32933/actainnovations.47.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32933/actainnovations.47.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Pineapple responses to postharvest applications of ABA, chitosan, and decrowning on the severity of internal browning and other fruit qualities
The shelf life of pineapple is significantly influenced by storage temperature and can be prolonged by maintaining an optimal temperature range of 5-12°C. However, there is still the problem of internal browning (IB) in the long-term storing of fresh harvest at cold temperatures. Postharvest application of 380 µM ABA (Abscisic Acid) to the crown, which is a source of ABA endogenous was found to suppress IB, while the concentration of 95 µM was not effective. Therefore, this research aimed to determine the response of GP3 and MD2 clones to postharvest treatment with the application of 50 mg/L ABA, chitosan and decrowning on the IB severity and other fruit qualities. The experimental design used a Completely Randomized Design with 3 factors of clone (GP3 and MD2), decrowning (crown and crownless), and fruit coating [chitosan 1%, ABA 50 mg/L, ABA + chitosan mix, and control (H2O)]. The fruits were kept at 7oC and observed at 0, 3, 6, 9, 16, 23, 30, and 37 days. The results showed that MD2 was significantly lower IB than GP3 and IB severity negatively correlated with ascorbic acid (AsA) content. MD2 had lower fruit weight loss (FWL) and skin dehydration (SD), higher AsA, soluble solid content (SSC), and SSC/titratable acidity (STA) ratios compared to GP3. The crown + ABA treatment decreased the IB severity of GP3, with a level of 0.75% after 37 days which was lower than crown + H2O by 9.17% and crownless + H2O by 8.42%. ABA treatment also showed higher SD and FWL, while AsA, SSC, TA, and STA were not different from the control.