吡唑啉类及其衍生物的合成方法、生物活性及构效关系

IF 8.6 2区 化学 Q1 Chemistry
Rajnish Kumar, Himanshu Singh, Avijit Mazumder,  Salahuddin, Ranjeet Kumar Yadav
{"title":"吡唑啉类及其衍生物的合成方法、生物活性及构效关系","authors":"Rajnish Kumar,&nbsp;Himanshu Singh,&nbsp;Avijit Mazumder,&nbsp; Salahuddin,&nbsp;Ranjeet Kumar Yadav","doi":"10.1007/s41061-023-00422-z","DOIUrl":null,"url":null,"abstract":"<div><p>It has been established that pyrazolines and their analogs are pharmacologically active scaffolds. The pyrazoline moiety is present in several marketed molecules with a wide range of uses, which has established its importance in pharmaceutical and agricultural sectors, as well as in industry. Due to its broad-spectrum utility, scientists are continuously captivated by pyrazolines and their derivatives to study their chemistry. Pyrazolines or their analogs can be prepared by several synthesis strategies, and the focus will always be on new greener and more economical ways for their synthesis. Among these methods, chalcones, hydrazines, diazo compounds, and hydrazones are most commonly applied under different reaction conditions for the synthesis of pyrazoline and its analogs. However, there is scope for other molecules such as Huisgen zwitterions, different metal catalysts, and nitrile imine to be used as starting reagents. The present article consists of recently reported synthetic protocols, pharmacological activities, and the structure–activity relationship of pyrazoline and its derivatives, which will be very useful to researchers.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Approaches, Biological Activities, and Structure–Activity Relationship of Pyrazolines and Related Derivatives\",\"authors\":\"Rajnish Kumar,&nbsp;Himanshu Singh,&nbsp;Avijit Mazumder,&nbsp; Salahuddin,&nbsp;Ranjeet Kumar Yadav\",\"doi\":\"10.1007/s41061-023-00422-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has been established that pyrazolines and their analogs are pharmacologically active scaffolds. The pyrazoline moiety is present in several marketed molecules with a wide range of uses, which has established its importance in pharmaceutical and agricultural sectors, as well as in industry. Due to its broad-spectrum utility, scientists are continuously captivated by pyrazolines and their derivatives to study their chemistry. Pyrazolines or their analogs can be prepared by several synthesis strategies, and the focus will always be on new greener and more economical ways for their synthesis. Among these methods, chalcones, hydrazines, diazo compounds, and hydrazones are most commonly applied under different reaction conditions for the synthesis of pyrazoline and its analogs. However, there is scope for other molecules such as Huisgen zwitterions, different metal catalysts, and nitrile imine to be used as starting reagents. The present article consists of recently reported synthetic protocols, pharmacological activities, and the structure–activity relationship of pyrazoline and its derivatives, which will be very useful to researchers.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-023-00422-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-023-00422-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

吡唑啉及其类似物是具有药理活性的支架。吡唑啉部分存在于几种市场上的分子中,具有广泛的用途,这在制药和农业部门以及工业中已经确立了它的重要性。由于它的广谱效用,科学家们不断地被吡唑啉及其衍生物所吸引,研究它们的化学性质。吡唑啉或其类似物可以通过几种合成策略来制备,并且重点将始终放在新的更环保和更经济的合成方法上。在这些方法中,查尔酮、肼、重氮化合物和腙是在不同的反应条件下最常用的合成吡唑啉及其类似物的方法。然而,其他分子如惠斯根两性离子、不同的金属催化剂和腈亚胺也可以作为起始试剂。本文综述了吡唑啉及其衍生物的合成方法、药理活性、构效关系等方面的最新报道,对研究吡唑啉及其衍生物有一定的参考价值。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthetic Approaches, Biological Activities, and Structure–Activity Relationship of Pyrazolines and Related Derivatives

Synthetic Approaches, Biological Activities, and Structure–Activity Relationship of Pyrazolines and Related Derivatives

It has been established that pyrazolines and their analogs are pharmacologically active scaffolds. The pyrazoline moiety is present in several marketed molecules with a wide range of uses, which has established its importance in pharmaceutical and agricultural sectors, as well as in industry. Due to its broad-spectrum utility, scientists are continuously captivated by pyrazolines and their derivatives to study their chemistry. Pyrazolines or their analogs can be prepared by several synthesis strategies, and the focus will always be on new greener and more economical ways for their synthesis. Among these methods, chalcones, hydrazines, diazo compounds, and hydrazones are most commonly applied under different reaction conditions for the synthesis of pyrazoline and its analogs. However, there is scope for other molecules such as Huisgen zwitterions, different metal catalysts, and nitrile imine to be used as starting reagents. The present article consists of recently reported synthetic protocols, pharmacological activities, and the structure–activity relationship of pyrazoline and its derivatives, which will be very useful to researchers.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信