基于自回归候选区域偏移技术的短期电力负荷预测

Q1 Engineering
J. Raharjo, Suyatno Budiharjo
{"title":"基于自回归候选区域偏移技术的短期电力负荷预测","authors":"J. Raharjo, Suyatno Budiharjo","doi":"10.15866/irea.v9i5.20668","DOIUrl":null,"url":null,"abstract":"Electric power load forecasting is needed to be used as a consideration in providing electricity in the future. A combination of the Auto Regressive model and the Candidates Area Shifting Technique is proposed to predict the demand for electrical loads. The results of the proposed method are compared with the ones of the hybrid Particle Swarm Optimization-Support Vector Regression and FCM Clustering Technique methods. The results show that the proposed method provides better performance than the other ones. The three methods provide mean absolute percentage error and maximum absolute percentage error respectively as follows: Particle Swarm Optimization-Support Vector Regression Method 2.859% and 9,516%, FCM Clustering 1.032% and 2.798%, and Auto Regressive-Candidates Area Shifting Technique 0.298%  and 0.872%, respectively.","PeriodicalId":53420,"journal":{"name":"International Journal on Engineering Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Electric Load Forecasting Using Auto Regressive-Candidates Area Shifting Technique\",\"authors\":\"J. Raharjo, Suyatno Budiharjo\",\"doi\":\"10.15866/irea.v9i5.20668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electric power load forecasting is needed to be used as a consideration in providing electricity in the future. A combination of the Auto Regressive model and the Candidates Area Shifting Technique is proposed to predict the demand for electrical loads. The results of the proposed method are compared with the ones of the hybrid Particle Swarm Optimization-Support Vector Regression and FCM Clustering Technique methods. The results show that the proposed method provides better performance than the other ones. The three methods provide mean absolute percentage error and maximum absolute percentage error respectively as follows: Particle Swarm Optimization-Support Vector Regression Method 2.859% and 9,516%, FCM Clustering 1.032% and 2.798%, and Auto Regressive-Candidates Area Shifting Technique 0.298%  and 0.872%, respectively.\",\"PeriodicalId\":53420,\"journal\":{\"name\":\"International Journal on Engineering Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Engineering Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/irea.v9i5.20668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/irea.v9i5.20668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

电力负荷预测需要作为未来供电的一个考虑因素。提出了将自回归模型与候选区域偏移技术相结合来预测电力负荷需求的方法。将该方法的结果与粒子群优化支持向量回归和FCM聚类技术的混合方法进行了比较。结果表明,该方法比其他方法具有更好的性能。这三种方法的平均绝对百分比误差和最大绝对百分比误差分别为:粒子群优化支持向量回归方法2.859%和9516%,FCM聚类方法1.032%和2.798%,自回归候选区域偏移技术0.298%和0.872%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Term Electric Load Forecasting Using Auto Regressive-Candidates Area Shifting Technique
Electric power load forecasting is needed to be used as a consideration in providing electricity in the future. A combination of the Auto Regressive model and the Candidates Area Shifting Technique is proposed to predict the demand for electrical loads. The results of the proposed method are compared with the ones of the hybrid Particle Swarm Optimization-Support Vector Regression and FCM Clustering Technique methods. The results show that the proposed method provides better performance than the other ones. The three methods provide mean absolute percentage error and maximum absolute percentage error respectively as follows: Particle Swarm Optimization-Support Vector Regression Method 2.859% and 9,516%, FCM Clustering 1.032% and 2.798%, and Auto Regressive-Candidates Area Shifting Technique 0.298%  and 0.872%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信