Erik G. C. P. van Loon, Malte Schüler, Daniel Springer, Giorgio Sangiovanni, Jan M. Tomczak, Tim O. Wehling
{"title":"二维莫特材料的库仑工程","authors":"Erik G. C. P. van Loon, Malte Schüler, Daniel Springer, Giorgio Sangiovanni, Jan M. Tomczak, Tim O. Wehling","doi":"10.1038/s41699-023-00408-x","DOIUrl":null,"url":null,"abstract":"Two-dimensional materials can be strongly influenced by their surroundings. A dielectric environment screens and reduces the Coulomb interaction between electrons in the two-dimensional material. Since in Mott materials the Coulomb interaction is responsible for the insulating state, manipulating the dielectric screening provides direct control over Mottness. Our many-body calculations reveal the spectroscopic fingerprints of such Coulomb engineering: we demonstrate eV-scale changes to the position of the Hubbard bands and show a Coulomb engineered insulator-to-metal transition. Based on our proof-of-principle calculations, we discuss the (feasible) conditions under which our scenario of Coulomb engineering of Mott materials can be realized experimentally.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-023-00408-x.pdf","citationCount":"7","resultStr":"{\"title\":\"Coulomb engineering of two-dimensional Mott materials\",\"authors\":\"Erik G. C. P. van Loon, Malte Schüler, Daniel Springer, Giorgio Sangiovanni, Jan M. Tomczak, Tim O. Wehling\",\"doi\":\"10.1038/s41699-023-00408-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional materials can be strongly influenced by their surroundings. A dielectric environment screens and reduces the Coulomb interaction between electrons in the two-dimensional material. Since in Mott materials the Coulomb interaction is responsible for the insulating state, manipulating the dielectric screening provides direct control over Mottness. Our many-body calculations reveal the spectroscopic fingerprints of such Coulomb engineering: we demonstrate eV-scale changes to the position of the Hubbard bands and show a Coulomb engineered insulator-to-metal transition. Based on our proof-of-principle calculations, we discuss the (feasible) conditions under which our scenario of Coulomb engineering of Mott materials can be realized experimentally.\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41699-023-00408-x.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41699-023-00408-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-023-00408-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Coulomb engineering of two-dimensional Mott materials
Two-dimensional materials can be strongly influenced by their surroundings. A dielectric environment screens and reduces the Coulomb interaction between electrons in the two-dimensional material. Since in Mott materials the Coulomb interaction is responsible for the insulating state, manipulating the dielectric screening provides direct control over Mottness. Our many-body calculations reveal the spectroscopic fingerprints of such Coulomb engineering: we demonstrate eV-scale changes to the position of the Hubbard bands and show a Coulomb engineered insulator-to-metal transition. Based on our proof-of-principle calculations, we discuss the (feasible) conditions under which our scenario of Coulomb engineering of Mott materials can be realized experimentally.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.