我们如何准确地估计最佳施肥量?

IF 2.3 4区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Fernando E. Miguez, Hanna Poffenbarger
{"title":"我们如何准确地估计最佳施肥量?","authors":"Fernando E. Miguez,&nbsp;Hanna Poffenbarger","doi":"10.1002/ael2.20075","DOIUrl":null,"url":null,"abstract":"<p>For decades, agronomists have invested time and resources to identify the optimum nitrogen (N) rates for cereal crops. The most common method for estimating the agronomic optimum N rate (AONR) is to design a field experiment with several N fertilizer rates and fit a regression model to the yield observations. Here, we concentrate on its accuracy and precision given choices of experimental design and statistical analysis. Our first finding is that the choice of functional form has a large agronomic effect on the estimate of the AONR, and this depends on the data-generating model. Our second finding is that improving the precision and accuracy of AONR estimates will demand an increase in the number of N rates and replications. Finally, we propose that using either the best-fitting model or a weighted model is preferable to always choosing either the linear-plateau (negative bias) or quadratic-plateau (positive bias) models.</p>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20075","citationCount":"4","resultStr":"{\"title\":\"How can we estimate optimum fertilizer rates with accuracy and precision?\",\"authors\":\"Fernando E. Miguez,&nbsp;Hanna Poffenbarger\",\"doi\":\"10.1002/ael2.20075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For decades, agronomists have invested time and resources to identify the optimum nitrogen (N) rates for cereal crops. The most common method for estimating the agronomic optimum N rate (AONR) is to design a field experiment with several N fertilizer rates and fit a regression model to the yield observations. Here, we concentrate on its accuracy and precision given choices of experimental design and statistical analysis. Our first finding is that the choice of functional form has a large agronomic effect on the estimate of the AONR, and this depends on the data-generating model. Our second finding is that improving the precision and accuracy of AONR estimates will demand an increase in the number of N rates and replications. Finally, we propose that using either the best-fitting model or a weighted model is preferable to always choosing either the linear-plateau (negative bias) or quadratic-plateau (positive bias) models.</p>\",\"PeriodicalId\":48502,\"journal\":{\"name\":\"Agricultural & Environmental Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20075\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Environmental Letters\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20075\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20075","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

几十年来,农学家一直投入时间和资源来确定谷物作物的最佳氮(N)含量。估算农艺最佳施氮量(AONR)最常用的方法是设计一个具有几种施氮量的田间试验,并根据产量观测结果拟合回归模型。在这里,我们集中讨论了在实验设计和统计分析的选择下它的准确性和精密度。我们的第一个发现是,功能形式的选择对AONR的估计有很大的农艺影响,这取决于数据生成模型。我们的第二个发现是,提高AONR估计的精度和准确性将需要增加N速率和重复次数。最后,我们提出,使用最佳拟合模型或加权模型比总是选择线性平台(负偏差)或二次平台(正偏差)模型更可取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

How can we estimate optimum fertilizer rates with accuracy and precision?

How can we estimate optimum fertilizer rates with accuracy and precision?

For decades, agronomists have invested time and resources to identify the optimum nitrogen (N) rates for cereal crops. The most common method for estimating the agronomic optimum N rate (AONR) is to design a field experiment with several N fertilizer rates and fit a regression model to the yield observations. Here, we concentrate on its accuracy and precision given choices of experimental design and statistical analysis. Our first finding is that the choice of functional form has a large agronomic effect on the estimate of the AONR, and this depends on the data-generating model. Our second finding is that improving the precision and accuracy of AONR estimates will demand an increase in the number of N rates and replications. Finally, we propose that using either the best-fitting model or a weighted model is preferable to always choosing either the linear-plateau (negative bias) or quadratic-plateau (positive bias) models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
3.80%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信