LM(RM)中Navier-Stokes方程的初值问题

Pesquimat Pub Date : 2019-05-03 DOI:10.15381/PES.V22I1.16123
Magdalena Huacasi Machaca
{"title":"LM(RM)中Navier-Stokes方程的初值问题","authors":"Magdalena Huacasi Machaca","doi":"10.15381/PES.V22I1.16123","DOIUrl":null,"url":null,"abstract":"En este artículo se aborda el problema de valor inicial para las ecuaciones de Navier-Stokes en Rm (m = 2; 3;...) con condición inicial en el subespacio PLp(Rm) de Lp(Rm), caracterizado por la condición de divergencia nula. Se estudia el problema considerando su formulación integral, en donde se usa un argumento de aproximaciones sucesivas. La existencia y unicidad de la solución local es probada dependiendo de una condición de pequeñez en el tiempo de existencia. Por otro lado el resultado global es probado con una pequeñez del dato inicial.","PeriodicalId":33010,"journal":{"name":"Pesquimat","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"El problema de valor inicial para las ecuaciones de Navier-Stokes en Lm(Rm)\",\"authors\":\"Magdalena Huacasi Machaca\",\"doi\":\"10.15381/PES.V22I1.16123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En este artículo se aborda el problema de valor inicial para las ecuaciones de Navier-Stokes en Rm (m = 2; 3;...) con condición inicial en el subespacio PLp(Rm) de Lp(Rm), caracterizado por la condición de divergencia nula. Se estudia el problema considerando su formulación integral, en donde se usa un argumento de aproximaciones sucesivas. La existencia y unicidad de la solución local es probada dependiendo de una condición de pequeñez en el tiempo de existencia. Por otro lado el resultado global es probado con una pequeñez del dato inicial.\",\"PeriodicalId\":33010,\"journal\":{\"name\":\"Pesquimat\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesquimat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15381/PES.V22I1.16123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquimat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15381/PES.V22I1.16123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了RM(m=2;3;…)中Navier-Stokes方程的初值问题。LP(RM)子空间中的初始条件,其特征是零散度条件。考虑到它的积分公式,研究了这个问题,其中使用了连续近似的参数。根据存在时间的一个小条件,证明了局部解的存在性和唯一性。另一方面,用初始数据的一小部分来测试总体结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
El problema de valor inicial para las ecuaciones de Navier-Stokes en Lm(Rm)
En este artículo se aborda el problema de valor inicial para las ecuaciones de Navier-Stokes en Rm (m = 2; 3;...) con condición inicial en el subespacio PLp(Rm) de Lp(Rm), caracterizado por la condición de divergencia nula. Se estudia el problema considerando su formulación integral, en donde se usa un argumento de aproximaciones sucesivas. La existencia y unicidad de la solución local es probada dependiendo de una condición de pequeñez en el tiempo de existencia. Por otro lado el resultado global es probado con una pequeñez del dato inicial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信