协调多个卫生系统的定性数据以确定质量改进干预措施:以prosper II子宫颈研究中心数据为例的方法框架

IF 3.9 2区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
Robin T. Higashi, G. Kruse, J. Richards, Anubha Sood, Patricia Chen, L. Quirk, Justin Kramer, Jasmin A. Tiro, L. Tuzzio, J. Haas, Marlaine S Figueroa Gray, S. Lee
{"title":"协调多个卫生系统的定性数据以确定质量改进干预措施:以prosper II子宫颈研究中心数据为例的方法框架","authors":"Robin T. Higashi, G. Kruse, J. Richards, Anubha Sood, Patricia Chen, L. Quirk, Justin Kramer, Jasmin A. Tiro, L. Tuzzio, J. Haas, Marlaine S Figueroa Gray, S. Lee","doi":"10.1177/16094069231157345","DOIUrl":null,"url":null,"abstract":"Background: Heterogeneity in healthcare systems’ organizational structures, policies and decisions influences practice implementation and care delivery. While quantitative data harmonization has been used to compare outcomes, few have conducted cross-site qualitative inquiry of healthcare delivery; thus, little is known about how to harmonize qualitative data across multiple settings. Objective: We illustrate a methodological approach for a theory-driven qualitative data harmonization process for the PROSPR II Cervical Research Center, a large multi-site, mixedmethods study evaluating cervical cancer screening across three diverse healthcare settings. Methods: We compared three geographically, socio-demographically, and structurally diverse healthcare systems using a multi-modal qualitative data collection strategy. We grounded our sampling strategy in a cervical cancer screening process model, then tailored it for system-specific differences (e.g., clinic staffing structure and individual roles). Data collection tools included domains corresponding to shared research objectives (e.g., abnormal follow-up) while accommodating local context. Analysis drew on operational domains from the screening process model and constructs from the Consolidated Framework for Implementation Research and Normalization Process Theory. Results: Exemplars demonstrate how data harmonization revealed insights suggesting opportunities to improve clinical processes across healthcare systems. Discussion: This analysis advances the application of qualitative methods in implementation science, where assessing context is key to responding to organizational challenges and shaping implementation strategies across multiple health systems. We demonstrate how systematically collecting, analyzing and harmonizing qualitative data elucidates the impact of process factors and accelerates efforts to identify opportunities for quality improvement interventions.","PeriodicalId":48220,"journal":{"name":"International Journal of Qualitative Methods","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonizing Qualitative Data Across Multiple Health Systems to Identify Quality Improvement Interventions: A Methodological Framework Using PROSPR II Cervical Research Center Data as Exemplar\",\"authors\":\"Robin T. Higashi, G. Kruse, J. Richards, Anubha Sood, Patricia Chen, L. Quirk, Justin Kramer, Jasmin A. Tiro, L. Tuzzio, J. Haas, Marlaine S Figueroa Gray, S. Lee\",\"doi\":\"10.1177/16094069231157345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Heterogeneity in healthcare systems’ organizational structures, policies and decisions influences practice implementation and care delivery. While quantitative data harmonization has been used to compare outcomes, few have conducted cross-site qualitative inquiry of healthcare delivery; thus, little is known about how to harmonize qualitative data across multiple settings. Objective: We illustrate a methodological approach for a theory-driven qualitative data harmonization process for the PROSPR II Cervical Research Center, a large multi-site, mixedmethods study evaluating cervical cancer screening across three diverse healthcare settings. Methods: We compared three geographically, socio-demographically, and structurally diverse healthcare systems using a multi-modal qualitative data collection strategy. We grounded our sampling strategy in a cervical cancer screening process model, then tailored it for system-specific differences (e.g., clinic staffing structure and individual roles). Data collection tools included domains corresponding to shared research objectives (e.g., abnormal follow-up) while accommodating local context. Analysis drew on operational domains from the screening process model and constructs from the Consolidated Framework for Implementation Research and Normalization Process Theory. Results: Exemplars demonstrate how data harmonization revealed insights suggesting opportunities to improve clinical processes across healthcare systems. Discussion: This analysis advances the application of qualitative methods in implementation science, where assessing context is key to responding to organizational challenges and shaping implementation strategies across multiple health systems. We demonstrate how systematically collecting, analyzing and harmonizing qualitative data elucidates the impact of process factors and accelerates efforts to identify opportunities for quality improvement interventions.\",\"PeriodicalId\":48220,\"journal\":{\"name\":\"International Journal of Qualitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Qualitative Methods\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/16094069231157345\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Qualitative Methods","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/16094069231157345","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:医疗系统的组织结构、政策和决策的异质性影响着实践的实施和医疗服务的提供。虽然定量数据协调已被用于比较结果,但很少有人对医疗保健服务进行跨站点的定性调查;因此,对于如何在多个设置中协调定性数据知之甚少。目的:我们阐述了一种理论驱动的定性数据协调过程的方法学方法,用于PROSPR II子宫颈研究中心,这是一项大型多地点,混合方法研究,评估三种不同医疗保健环境中的宫颈癌筛查。方法:我们使用多模式定性数据收集策略比较了三个地理上、社会人口统计学上和结构上不同的医疗保健系统。我们将抽样策略建立在宫颈癌筛查过程模型的基础上,然后根据系统特异性差异(例如,诊所人员配置结构和个人角色)对其进行调整。数据收集工具包括与共同研究目标相对应的领域(例如,异常随访),同时适应当地情况。分析利用筛选过程模型中的操作域和实施研究统一框架和规范化过程理论中的构造。结果:范例展示了数据协调如何揭示了建议改善医疗保健系统临床流程的机会的见解。讨论:这一分析促进了定性方法在实施科学中的应用,其中评估背景是应对组织挑战和制定跨多个卫生系统实施战略的关键。我们展示了如何系统地收集、分析和协调定性数据,阐明了过程因素的影响,并加快了识别质量改进干预机会的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonizing Qualitative Data Across Multiple Health Systems to Identify Quality Improvement Interventions: A Methodological Framework Using PROSPR II Cervical Research Center Data as Exemplar
Background: Heterogeneity in healthcare systems’ organizational structures, policies and decisions influences practice implementation and care delivery. While quantitative data harmonization has been used to compare outcomes, few have conducted cross-site qualitative inquiry of healthcare delivery; thus, little is known about how to harmonize qualitative data across multiple settings. Objective: We illustrate a methodological approach for a theory-driven qualitative data harmonization process for the PROSPR II Cervical Research Center, a large multi-site, mixedmethods study evaluating cervical cancer screening across three diverse healthcare settings. Methods: We compared three geographically, socio-demographically, and structurally diverse healthcare systems using a multi-modal qualitative data collection strategy. We grounded our sampling strategy in a cervical cancer screening process model, then tailored it for system-specific differences (e.g., clinic staffing structure and individual roles). Data collection tools included domains corresponding to shared research objectives (e.g., abnormal follow-up) while accommodating local context. Analysis drew on operational domains from the screening process model and constructs from the Consolidated Framework for Implementation Research and Normalization Process Theory. Results: Exemplars demonstrate how data harmonization revealed insights suggesting opportunities to improve clinical processes across healthcare systems. Discussion: This analysis advances the application of qualitative methods in implementation science, where assessing context is key to responding to organizational challenges and shaping implementation strategies across multiple health systems. We demonstrate how systematically collecting, analyzing and harmonizing qualitative data elucidates the impact of process factors and accelerates efforts to identify opportunities for quality improvement interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Qualitative Methods
International Journal of Qualitative Methods SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
6.90
自引率
11.10%
发文量
139
审稿时长
12 weeks
期刊介绍: Journal Highlights Impact Factor: 5.4 Ranked 5/110 in Social Sciences, Interdisciplinary – SSCI Indexed In: Clarivate Analytics: Social Science Citation Index, the Directory of Open Access Journals (DOAJ), and Scopus Launched In: 2002 Publication is subject to payment of an article processing charge (APC) Submit here International Journal of Qualitative Methods (IJQM) is a peer-reviewed open access journal which focuses on methodological advances, innovations, and insights in qualitative or mixed methods studies. Please see the Aims and Scope tab for further information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信