电流开关作为交叉耦合/C−H溴化一锅合成溴酰基吡啶的策略

IF 2.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Yamato Hirota, Takaya Fujie, Takuya Kochi, Fumitoshi Kakiuchi
{"title":"电流开关作为交叉耦合/C−H溴化一锅合成溴酰基吡啶的策略","authors":"Yamato Hirota,&nbsp;Takaya Fujie,&nbsp;Takuya Kochi,&nbsp;Fumitoshi Kakiuchi","doi":"10.1002/ijch.202300087","DOIUrl":null,"url":null,"abstract":"<p>An “OFF/ON” electric current switching protocol was developed as a new strategy for one-pot organic synthesis. Suzuki-Miyaura coupling of 2-bromopyridines with arylboronic acids in an electrochemical cell was performed without applying an electric current, and subsequently, the Pd-catalyzed electrochemical C−H bromination was conducted using the already-present Pd catalyst to obtain 2-(2-bromoaryl)pyridines as products. The one-pot synthesis of bromoarenes can also be achieved without adding an external Br source in the second step. Furthermore, an OFF/ON/OFF two-times switching protocol also realized the formation of an N-containing teraryl derivative.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 1-2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300087","citationCount":"0","resultStr":"{\"title\":\"Off/on Switching of Electric Current as a Strategy for One-Pot Synthesis of Bromoarylpyridines by Cross-Coupling/ C−H Bromination\",\"authors\":\"Yamato Hirota,&nbsp;Takaya Fujie,&nbsp;Takuya Kochi,&nbsp;Fumitoshi Kakiuchi\",\"doi\":\"10.1002/ijch.202300087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An “OFF/ON” electric current switching protocol was developed as a new strategy for one-pot organic synthesis. Suzuki-Miyaura coupling of 2-bromopyridines with arylboronic acids in an electrochemical cell was performed without applying an electric current, and subsequently, the Pd-catalyzed electrochemical C−H bromination was conducted using the already-present Pd catalyst to obtain 2-(2-bromoaryl)pyridines as products. The one-pot synthesis of bromoarenes can also be achieved without adding an external Br source in the second step. Furthermore, an OFF/ON/OFF two-times switching protocol also realized the formation of an N-containing teraryl derivative.</p>\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":\"64 1-2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202300087\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202300087","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种 "OFF/ON "电流切换方案,作为一锅有机合成的新策略。在电化学电池中,无需施加电流即可实现 2-溴吡啶与芳基硼酸的 Suzuki-Miyaura 偶联,随后利用已存在的 Pd 催化剂进行 Pd 催化的电化学 C-H 溴化反应,得到 2-(2-溴芳基)吡啶作为产物。在第二步中,无需添加外部溴源,也可实现溴代烯烃的一锅合成。此外,OFF/ON/OFF 两次切换方案还实现了含 N 的萜芳基衍生物的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Off/on Switching of Electric Current as a Strategy for One-Pot Synthesis of Bromoarylpyridines by Cross-Coupling/ C−H Bromination

Off/on Switching of Electric Current as a Strategy for One-Pot Synthesis of Bromoarylpyridines by Cross-Coupling/ C−H Bromination

An “OFF/ON” electric current switching protocol was developed as a new strategy for one-pot organic synthesis. Suzuki-Miyaura coupling of 2-bromopyridines with arylboronic acids in an electrochemical cell was performed without applying an electric current, and subsequently, the Pd-catalyzed electrochemical C−H bromination was conducted using the already-present Pd catalyst to obtain 2-(2-bromoaryl)pyridines as products. The one-pot synthesis of bromoarenes can also be achieved without adding an external Br source in the second step. Furthermore, an OFF/ON/OFF two-times switching protocol also realized the formation of an N-containing teraryl derivative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Israel Journal of Chemistry
Israel Journal of Chemistry 化学-化学综合
CiteScore
6.20
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry. The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH. The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信