{"title":"具有HOLLINGⅢ型功能反应的捕食模型在收获条件下的全局动力学","authors":"S. Debnath, P. Majumdar, Sudeep Sarkar, U. Ghosh","doi":"10.1142/s0218339022500073","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated global dynamics of a two-species food chain model with the Holling type III functional response that includes linear harvesting for the prey and nonlinear harvesting for the predator. The long-time continued existence of both species is discussed using uniform persistence theory. Stability of various equilibrium points is described in terms of model parameters. The local asymptotic stability of non-hyperbolic equilibrium points is determined with the help of center manifold theorem. Global behavior of solutions of the model system when both species are present is determined by considering the global properties of the coexistence equilibrium. Here, we have taken a comprehensive view by considering different bifurcations of co-dimension one and two and have discussed the importance of various model parameters on the system dynamics. The model system shows much more complex and realistic behavior compared to a model system without any harvesting, with constant harvesting or linear-yield harvesting of either or both of the species. Numerical simulations have been conducted to illustrate the theoretical findings.","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"GLOBAL DYNAMICS OF A PREY–PREDATOR MODEL WITH HOLLING TYPE III FUNCTIONAL RESPONSE IN THE PRESENCE OF HARVESTING\",\"authors\":\"S. Debnath, P. Majumdar, Sudeep Sarkar, U. Ghosh\",\"doi\":\"10.1142/s0218339022500073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have investigated global dynamics of a two-species food chain model with the Holling type III functional response that includes linear harvesting for the prey and nonlinear harvesting for the predator. The long-time continued existence of both species is discussed using uniform persistence theory. Stability of various equilibrium points is described in terms of model parameters. The local asymptotic stability of non-hyperbolic equilibrium points is determined with the help of center manifold theorem. Global behavior of solutions of the model system when both species are present is determined by considering the global properties of the coexistence equilibrium. Here, we have taken a comprehensive view by considering different bifurcations of co-dimension one and two and have discussed the importance of various model parameters on the system dynamics. The model system shows much more complex and realistic behavior compared to a model system without any harvesting, with constant harvesting or linear-yield harvesting of either or both of the species. Numerical simulations have been conducted to illustrate the theoretical findings.\",\"PeriodicalId\":54872,\"journal\":{\"name\":\"Journal of Biological Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218339022500073\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s0218339022500073","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
GLOBAL DYNAMICS OF A PREY–PREDATOR MODEL WITH HOLLING TYPE III FUNCTIONAL RESPONSE IN THE PRESENCE OF HARVESTING
In this paper, we have investigated global dynamics of a two-species food chain model with the Holling type III functional response that includes linear harvesting for the prey and nonlinear harvesting for the predator. The long-time continued existence of both species is discussed using uniform persistence theory. Stability of various equilibrium points is described in terms of model parameters. The local asymptotic stability of non-hyperbolic equilibrium points is determined with the help of center manifold theorem. Global behavior of solutions of the model system when both species are present is determined by considering the global properties of the coexistence equilibrium. Here, we have taken a comprehensive view by considering different bifurcations of co-dimension one and two and have discussed the importance of various model parameters on the system dynamics. The model system shows much more complex and realistic behavior compared to a model system without any harvesting, with constant harvesting or linear-yield harvesting of either or both of the species. Numerical simulations have been conducted to illustrate the theoretical findings.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.