{"title":"因子模型方法在准实验环境中估计因果效应的统计推断","authors":"Kathleen T. Li, Garrett P. Sonnier","doi":"10.1177/00222437221137533","DOIUrl":null,"url":null,"abstract":"Causal inference using quasi-experimental data is of great interest to marketers. The factor model approach to estimate treatment effects accommodates a large number of control units and can easily handle a large number of treatment units while flexibly allowing for cases where the treatment is outside the range of the control units. However, the factor model method lacks formal inference theory, instead relying on bootstrap or permutation procedures with strong assumptions. Specifically, the extant Xu (2017) bootstrap procedure requires that the treatment and control error variances are equal. In this research the authors establish that when this assumption is violated, the bootstrap procedure results in biased coverage intervals. The authors develop a formal inference theory for the factor model approach to estimate the average treatment effects on the treated. The approach enables formal quantification of uncertainty through hypothesis testing and confidence intervals. The inference method is applicable to both stationary and nonstationary data. More importantly, the inference theory accommodates treatment and control unit outcomes with different distributions, which includes different error variances as a special case. The authors show the performance of the inference theory with simulated data. Finally, they apply the method to empirically quantify the uncertainty in the effect of legalizing recreational marijuana on the beer market and the sales effect of a digitally native online brand opening a physical showroom.","PeriodicalId":48465,"journal":{"name":"Journal of Marketing Research","volume":"60 1","pages":"449 - 472"},"PeriodicalIF":5.1000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Inference for the Factor Model Approach to Estimate Causal Effects in Quasi-Experimental Settings\",\"authors\":\"Kathleen T. Li, Garrett P. Sonnier\",\"doi\":\"10.1177/00222437221137533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causal inference using quasi-experimental data is of great interest to marketers. The factor model approach to estimate treatment effects accommodates a large number of control units and can easily handle a large number of treatment units while flexibly allowing for cases where the treatment is outside the range of the control units. However, the factor model method lacks formal inference theory, instead relying on bootstrap or permutation procedures with strong assumptions. Specifically, the extant Xu (2017) bootstrap procedure requires that the treatment and control error variances are equal. In this research the authors establish that when this assumption is violated, the bootstrap procedure results in biased coverage intervals. The authors develop a formal inference theory for the factor model approach to estimate the average treatment effects on the treated. The approach enables formal quantification of uncertainty through hypothesis testing and confidence intervals. The inference method is applicable to both stationary and nonstationary data. More importantly, the inference theory accommodates treatment and control unit outcomes with different distributions, which includes different error variances as a special case. The authors show the performance of the inference theory with simulated data. Finally, they apply the method to empirically quantify the uncertainty in the effect of legalizing recreational marijuana on the beer market and the sales effect of a digitally native online brand opening a physical showroom.\",\"PeriodicalId\":48465,\"journal\":{\"name\":\"Journal of Marketing Research\",\"volume\":\"60 1\",\"pages\":\"449 - 472\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marketing Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/00222437221137533\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marketing Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/00222437221137533","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Statistical Inference for the Factor Model Approach to Estimate Causal Effects in Quasi-Experimental Settings
Causal inference using quasi-experimental data is of great interest to marketers. The factor model approach to estimate treatment effects accommodates a large number of control units and can easily handle a large number of treatment units while flexibly allowing for cases where the treatment is outside the range of the control units. However, the factor model method lacks formal inference theory, instead relying on bootstrap or permutation procedures with strong assumptions. Specifically, the extant Xu (2017) bootstrap procedure requires that the treatment and control error variances are equal. In this research the authors establish that when this assumption is violated, the bootstrap procedure results in biased coverage intervals. The authors develop a formal inference theory for the factor model approach to estimate the average treatment effects on the treated. The approach enables formal quantification of uncertainty through hypothesis testing and confidence intervals. The inference method is applicable to both stationary and nonstationary data. More importantly, the inference theory accommodates treatment and control unit outcomes with different distributions, which includes different error variances as a special case. The authors show the performance of the inference theory with simulated data. Finally, they apply the method to empirically quantify the uncertainty in the effect of legalizing recreational marijuana on the beer market and the sales effect of a digitally native online brand opening a physical showroom.
期刊介绍:
JMR is written for those academics and practitioners of marketing research who need to be in the forefront of the profession and in possession of the industry"s cutting-edge information. JMR publishes articles representing the entire spectrum of research in marketing. The editorial content is peer-reviewed by an expert panel of leading academics. Articles address the concepts, methods, and applications of marketing research that present new techniques for solving marketing problems; contribute to marketing knowledge based on the use of experimental, descriptive, or analytical techniques; and review and comment on the developments and concepts in related fields that have a bearing on the research industry and its practices.