逼近多项式生长函数的q-Gamma型算子

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Purshottam Narain Agrawal, Behar Baxhaku, Ruchi Chauhan
{"title":"逼近多项式生长函数的q-Gamma型算子","authors":"Purshottam Narain Agrawal,&nbsp;Behar Baxhaku,&nbsp;Ruchi Chauhan","doi":"10.1007/s40995-023-01507-6","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the rate of convergence of the operators introduced by Singh et al. (Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2021.1960260) for functions of a polynomial growth. By using Steklov means, we obtain an estimate of error for these operators in terms of the modulus of continuity of order two. We derive an asymptotic theorem of Voronovskaja type and its quantitative form. Further, we modify these operators to examine the approximation of smooth functions in the above polynomial weighted space, i.e. a space of functions under a norm that involves multiplication by a polynomial function referred to as the weight and show that we achieve better approximation. We also discuss the convergence in the Lipschitz space and a Voronovskaja type asymptotic result.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"47 4","pages":"1367 - 1377"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40995-023-01507-6.pdf","citationCount":"0","resultStr":"{\"title\":\"q-Gamma Type Operators for Approximating Functions of a Polynomial Growth\",\"authors\":\"Purshottam Narain Agrawal,&nbsp;Behar Baxhaku,&nbsp;Ruchi Chauhan\",\"doi\":\"10.1007/s40995-023-01507-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the rate of convergence of the operators introduced by Singh et al. (Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2021.1960260) for functions of a polynomial growth. By using Steklov means, we obtain an estimate of error for these operators in terms of the modulus of continuity of order two. We derive an asymptotic theorem of Voronovskaja type and its quantitative form. Further, we modify these operators to examine the approximation of smooth functions in the above polynomial weighted space, i.e. a space of functions under a norm that involves multiplication by a polynomial function referred to as the weight and show that we achieve better approximation. We also discuss the convergence in the Lipschitz space and a Voronovskaja type asymptotic result.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"47 4\",\"pages\":\"1367 - 1377\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40995-023-01507-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-023-01507-6\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-023-01507-6","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Singh等人(线性多线性代数,2022)引入的算子的收敛速度。https://doi.org/10.1080/03081087.2021.1960260)用于多项式增长的函数。利用Steklov均值,我们得到了这些算子的二阶连续模的误差估计。给出了Voronovskaja型的一个渐近定理及其定量形式。进一步,我们修改这些算子来检验上述多项式加权空间中光滑函数的逼近,即在范数下的函数空间中,涉及到与称为权重的多项式函数的乘法,并表明我们获得了更好的逼近。讨论了该方法在Lipschitz空间中的收敛性,并得到了Voronovskaja型渐近结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-Gamma Type Operators for Approximating Functions of a Polynomial Growth

We investigate the rate of convergence of the operators introduced by Singh et al. (Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2021.1960260) for functions of a polynomial growth. By using Steklov means, we obtain an estimate of error for these operators in terms of the modulus of continuity of order two. We derive an asymptotic theorem of Voronovskaja type and its quantitative form. Further, we modify these operators to examine the approximation of smooth functions in the above polynomial weighted space, i.e. a space of functions under a norm that involves multiplication by a polynomial function referred to as the weight and show that we achieve better approximation. We also discuss the convergence in the Lipschitz space and a Voronovskaja type asymptotic result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信