基于增强型深孔换热器和太阳能的混合供热系统性能研究

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Yujiang He, Xianbiao Bu
{"title":"基于增强型深孔换热器和太阳能的混合供热系统性能研究","authors":"Yujiang He,&nbsp;Xianbiao Bu","doi":"10.1186/s40517-022-00236-0","DOIUrl":null,"url":null,"abstract":"<div><p>Deep borehole heat exchanger (DBHE) is a closed loop system without the problem of fluid losses, scale formation and corrosion; however, low rock thermal conductivity limits its performance. Enlightened by drilling mud loss in oil and gas industry, here an enhanced DBHE (EDBHE) is proposed by filling materials with much higher thermal conductivity into leakage formation or depleted gas and oil reservoir to enhance the thermal conductivity performance of rock. Solar thermal energy is stored into EDBHE during the non-heating season to replenish the loss of heat energy extracted during the heating season. The results show that average heat mining rate for 20 years operations is, respectively, 3686.5 and 26,384.4 kW for EDBHE filled by ordinary drilling mud and by composite materials with high thermal conductivity. The percentage reduction of heat mining rate for 20 years operations for EDBHE and the hybrid system of geothermal and solar energy are, respectively, 16.1 and 5.8%, indicating that the hybrid system can make the heat mining rate more stable.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00236-0","citationCount":"0","resultStr":"{\"title\":\"Performance of a hybrid heating system based on enhanced deep borehole heat exchanger and solar energy\",\"authors\":\"Yujiang He,&nbsp;Xianbiao Bu\",\"doi\":\"10.1186/s40517-022-00236-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep borehole heat exchanger (DBHE) is a closed loop system without the problem of fluid losses, scale formation and corrosion; however, low rock thermal conductivity limits its performance. Enlightened by drilling mud loss in oil and gas industry, here an enhanced DBHE (EDBHE) is proposed by filling materials with much higher thermal conductivity into leakage formation or depleted gas and oil reservoir to enhance the thermal conductivity performance of rock. Solar thermal energy is stored into EDBHE during the non-heating season to replenish the loss of heat energy extracted during the heating season. The results show that average heat mining rate for 20 years operations is, respectively, 3686.5 and 26,384.4 kW for EDBHE filled by ordinary drilling mud and by composite materials with high thermal conductivity. The percentage reduction of heat mining rate for 20 years operations for EDBHE and the hybrid system of geothermal and solar energy are, respectively, 16.1 and 5.8%, indicating that the hybrid system can make the heat mining rate more stable.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00236-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-022-00236-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00236-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

深井热交换器(DBHE)是一个闭环系统,不存在漏失、结垢和腐蚀问题;然而,低岩石导热系数限制了它的性能。受油气行业钻井失泥的启发,提出了一种增强DBHE (EDBHE)的方法,即在泄漏地层或枯竭油气储层中填充导热系数更高的材料,以增强岩石的导热性能。在非采暖季节,将太阳能热能储存到EDBHE中,以补充采暖季节提取的热能损失。结果表明:采用普通钻井液和高导热复合材料充填的EDBHE, 20年平均采热率分别为3686.5和26384.4 kW;EDBHE和地热太阳能混合系统运行20年的热采收率降低百分比分别为16.1%和5.8%,表明混合系统可以使热采收率更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of a hybrid heating system based on enhanced deep borehole heat exchanger and solar energy

Deep borehole heat exchanger (DBHE) is a closed loop system without the problem of fluid losses, scale formation and corrosion; however, low rock thermal conductivity limits its performance. Enlightened by drilling mud loss in oil and gas industry, here an enhanced DBHE (EDBHE) is proposed by filling materials with much higher thermal conductivity into leakage formation or depleted gas and oil reservoir to enhance the thermal conductivity performance of rock. Solar thermal energy is stored into EDBHE during the non-heating season to replenish the loss of heat energy extracted during the heating season. The results show that average heat mining rate for 20 years operations is, respectively, 3686.5 and 26,384.4 kW for EDBHE filled by ordinary drilling mud and by composite materials with high thermal conductivity. The percentage reduction of heat mining rate for 20 years operations for EDBHE and the hybrid system of geothermal and solar energy are, respectively, 16.1 and 5.8%, indicating that the hybrid system can make the heat mining rate more stable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信