{"title":"非阿基米德几何中Stein空间的概念","authors":"Marco Maculan, Jérôme Poineau","doi":"10.1090/jag/764","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a non-Archimedean complete valued field and let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-analytic space in the sense of Berkovich. In this note, we prove the equivalence between three properties: (1) for every complete valued extension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k prime\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>k</mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">k’</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, every coherent sheaf on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X times Subscript k Baseline k prime\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:msub>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msup>\n <mml:mi>k</mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X \\times _{k} k’</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is acyclic; (2) <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is Stein in the sense of complex geometry (holomorphically separated, holomorphically convex), and higher cohomology groups of the structure sheaf vanish (this latter hypothesis is crucial if, for instance, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is compact); (3) <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admits a suitable exhaustion by compact analytic domains considered by Liu in his counter-example to the cohomological criterion for affinoidicity.</p>\n\n<p>When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has no boundary the characterization is simpler: in (2) the vanishing of higher cohomology groups of the structure sheaf is no longer needed, so that we recover the usual notion of Stein space in complex geometry; in (3) the domains considered by Liu can be replaced by affinoid domains, which leads us back to Kiehl’s definition of Stein space.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Notions of Stein spaces in non-Archimedean geometry\",\"authors\":\"Marco Maculan, Jérôme Poineau\",\"doi\":\"10.1090/jag/764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a non-Archimedean complete valued field and let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-analytic space in the sense of Berkovich. In this note, we prove the equivalence between three properties: (1) for every complete valued extension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k prime\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>k</mml:mi>\\n <mml:mo>′</mml:mo>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k’</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, every coherent sheaf on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X times Subscript k Baseline k prime\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>X</mml:mi>\\n <mml:msub>\\n <mml:mo>×<!-- × --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>k</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msup>\\n <mml:mi>k</mml:mi>\\n <mml:mo>′</mml:mo>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X \\\\times _{k} k’</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is acyclic; (2) <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is Stein in the sense of complex geometry (holomorphically separated, holomorphically convex), and higher cohomology groups of the structure sheaf vanish (this latter hypothesis is crucial if, for instance, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is compact); (3) <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> admits a suitable exhaustion by compact analytic domains considered by Liu in his counter-example to the cohomological criterion for affinoidicity.</p>\\n\\n<p>When <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> has no boundary the characterization is simpler: in (2) the vanishing of higher cohomology groups of the structure sheaf is no longer needed, so that we recover the usual notion of Stein space in complex geometry; in (3) the domains considered by Liu can be replaced by affinoid domains, which leads us back to Kiehl’s definition of Stein space.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/764\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/764","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
摘要
设k k是一个非阿基米德完备值域,设X X是Berkovich意义上的k k-解析空间。在本文中,我们证明了三个性质之间的等价性:(1)对于k k的每个全值扩展k′k′,X×k′X\times_{k}k′上的每个相干簇都是非循环的;(2) X X是复几何意义上的Stein(全纯分离,全纯凸),并且结构sheaf的更高上同调群消失(例如,如果X X是紧致的,则后一个假设是关键的);(3) X X承认刘在其反例中考虑的紧致分析域对仿射的上同调标准的适当穷尽。当X X没有边界时,表征更简单:在(2)结构sheaf的上同调群的消失不再需要,因此我们恢复了复杂几何中Stein空间的通常概念;在(3)刘认为的域可以被仿射域取代,这使我们回到了基尔对Stein空间的定义。
Notions of Stein spaces in non-Archimedean geometry
Let kk be a non-Archimedean complete valued field and let XX be a kk-analytic space in the sense of Berkovich. In this note, we prove the equivalence between three properties: (1) for every complete valued extension k′k’ of kk, every coherent sheaf on X×kk′X \times _{k} k’ is acyclic; (2) XX is Stein in the sense of complex geometry (holomorphically separated, holomorphically convex), and higher cohomology groups of the structure sheaf vanish (this latter hypothesis is crucial if, for instance, XX is compact); (3) XX admits a suitable exhaustion by compact analytic domains considered by Liu in his counter-example to the cohomological criterion for affinoidicity.
When XX has no boundary the characterization is simpler: in (2) the vanishing of higher cohomology groups of the structure sheaf is no longer needed, so that we recover the usual notion of Stein space in complex geometry; in (3) the domains considered by Liu can be replaced by affinoid domains, which leads us back to Kiehl’s definition of Stein space.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.