美国密西西比州北部始新统塔拉哈塔组沉积学与地球化学分析

IF 1.5 4区 地球科学 Q2 GEOLOGY
Journal of Geology Pub Date : 2022-04-01 DOI:10.1086/720183
Husamaldeen Zubi, B. Platt, Jennifer N. Gifford
{"title":"美国密西西比州北部始新统塔拉哈塔组沉积学与地球化学分析","authors":"Husamaldeen Zubi, B. Platt, Jennifer N. Gifford","doi":"10.1086/720183","DOIUrl":null,"url":null,"abstract":"The Eocene Tallahatta Formation forms part of the Tallahatta-Winona aquifer, which is part of the lower Claiborne confining unit of the Mississippi Embayment. A thorough understanding of the distribution of natural resources within the Tallahatta is limited by a lack of detailed studies at the outcrop and pore scales. In this study, we integrate particle size, petrographic, lithofacies, and geochemical analyses to interpret depositional environments, sequence stratigraphy, provenance, and diagenetic history from outcrops in Grenada County, Mississippi. Lithofacies include unprotected sand flat, tidal channel, open tidal mudflat, protected tidal flat, lower and middle shoreface, offshore transition, and offshore shelf settings. Lithofacies associations indicate that the Tallahatta consists of at least two parasequences within a falling stage systems tract (FSST). This is the first report on FSST strata from the Tallahatta Formation. Petrographic and geochemical results show that sediments were sourced from Precambrian Laurentian basement, recycled Appalachian basin sediment, and the Appalachian hinterland. Upsection changes in geochemistry represent an increase in contributions from recycled Appalachian basin sediment and progressive weathering of Acadian orogeny elements. Geochemistry also suggests that potentially economically important Ti-rich minerals are concentrated in tidal flat facies and scarce in shoreface facies. Primary porosity and bioturbation exert the greatest influence on the high porosity within many lithofacies. Early diagenesis also included detrital clay coating of framework grains, deposition of fecal pellets, minor chemical weathering, and hematite precipitation. Fecal pellets were altered to glauconite and opal cement was precipitated shortly after deposition or during early burial. Shrinkage of fecal pellets during glauconitization introduced minor moldic porosity. Limited burial produced minor physical compaction and only slightly reduced porosity. Abundant hematite precipitation during exhumation greatly decreased porosity locally.","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sedimentological and Geochemical Analysis of the Eocene Tallahatta Formation in Northern Mississippi, USA\",\"authors\":\"Husamaldeen Zubi, B. Platt, Jennifer N. Gifford\",\"doi\":\"10.1086/720183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Eocene Tallahatta Formation forms part of the Tallahatta-Winona aquifer, which is part of the lower Claiborne confining unit of the Mississippi Embayment. A thorough understanding of the distribution of natural resources within the Tallahatta is limited by a lack of detailed studies at the outcrop and pore scales. In this study, we integrate particle size, petrographic, lithofacies, and geochemical analyses to interpret depositional environments, sequence stratigraphy, provenance, and diagenetic history from outcrops in Grenada County, Mississippi. Lithofacies include unprotected sand flat, tidal channel, open tidal mudflat, protected tidal flat, lower and middle shoreface, offshore transition, and offshore shelf settings. Lithofacies associations indicate that the Tallahatta consists of at least two parasequences within a falling stage systems tract (FSST). This is the first report on FSST strata from the Tallahatta Formation. Petrographic and geochemical results show that sediments were sourced from Precambrian Laurentian basement, recycled Appalachian basin sediment, and the Appalachian hinterland. Upsection changes in geochemistry represent an increase in contributions from recycled Appalachian basin sediment and progressive weathering of Acadian orogeny elements. Geochemistry also suggests that potentially economically important Ti-rich minerals are concentrated in tidal flat facies and scarce in shoreface facies. Primary porosity and bioturbation exert the greatest influence on the high porosity within many lithofacies. Early diagenesis also included detrital clay coating of framework grains, deposition of fecal pellets, minor chemical weathering, and hematite precipitation. Fecal pellets were altered to glauconite and opal cement was precipitated shortly after deposition or during early burial. Shrinkage of fecal pellets during glauconitization introduced minor moldic porosity. Limited burial produced minor physical compaction and only slightly reduced porosity. Abundant hematite precipitation during exhumation greatly decreased porosity locally.\",\"PeriodicalId\":54826,\"journal\":{\"name\":\"Journal of Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/720183\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/720183","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

始新世塔拉哈塔组是塔拉哈塔-威诺纳含水层的一部分,是密西西比海湾克莱本下部围合单元的一部分。由于缺乏对露头和孔隙尺度的详细研究,对塔拉哈塔地区自然资源分布的深入了解受到了限制。在这项研究中,我们综合了粒度、岩石学、岩相和地球化学分析,以解释密西西比州格林纳达县露头的沉积环境、层序地层学、物源和成岩历史。岩相包括不受保护的沙滩、潮汐通道、开放的潮汐泥滩、受保护的潮汐滩、中下游滨面、近海过渡和近海陆架环境。岩相组合表明,塔拉哈塔在一个降阶体系域(FSST)内至少由两个准层序组成。这是关于Tallahatta组FSST地层的第一篇报道。岩石学和地球化学结果表明,沉积物来源于前寒武纪劳伦基底、阿巴拉契亚盆地沉积物和阿巴拉契亚腹地。地球化学上切变化表明阿巴拉契亚盆地沉积物的再循环和阿卡迪亚造山元素的递进风化作用的贡献增加。地球化学还表明,具有潜在经济价值的富钛矿物主要集中在潮滩相,而滨面相较少。原生孔隙度和生物扰动对许多岩相的高孔隙度影响最大。早期成岩作用还包括骨架颗粒的碎屑粘土包覆、粪球沉积、轻微的化学风化和赤铁矿沉淀。粪便颗粒变成海绿石,在沉积后不久或早期掩埋时沉淀蛋白石水泥。在青绿化过程中,粪便颗粒的收缩引起了轻微的霉菌孔隙。有限的埋藏产生了轻微的物理压实作用,孔隙度只略微降低。挖掘过程中大量的赤铁矿沉淀大大降低了局部孔隙度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sedimentological and Geochemical Analysis of the Eocene Tallahatta Formation in Northern Mississippi, USA
The Eocene Tallahatta Formation forms part of the Tallahatta-Winona aquifer, which is part of the lower Claiborne confining unit of the Mississippi Embayment. A thorough understanding of the distribution of natural resources within the Tallahatta is limited by a lack of detailed studies at the outcrop and pore scales. In this study, we integrate particle size, petrographic, lithofacies, and geochemical analyses to interpret depositional environments, sequence stratigraphy, provenance, and diagenetic history from outcrops in Grenada County, Mississippi. Lithofacies include unprotected sand flat, tidal channel, open tidal mudflat, protected tidal flat, lower and middle shoreface, offshore transition, and offshore shelf settings. Lithofacies associations indicate that the Tallahatta consists of at least two parasequences within a falling stage systems tract (FSST). This is the first report on FSST strata from the Tallahatta Formation. Petrographic and geochemical results show that sediments were sourced from Precambrian Laurentian basement, recycled Appalachian basin sediment, and the Appalachian hinterland. Upsection changes in geochemistry represent an increase in contributions from recycled Appalachian basin sediment and progressive weathering of Acadian orogeny elements. Geochemistry also suggests that potentially economically important Ti-rich minerals are concentrated in tidal flat facies and scarce in shoreface facies. Primary porosity and bioturbation exert the greatest influence on the high porosity within many lithofacies. Early diagenesis also included detrital clay coating of framework grains, deposition of fecal pellets, minor chemical weathering, and hematite precipitation. Fecal pellets were altered to glauconite and opal cement was precipitated shortly after deposition or during early burial. Shrinkage of fecal pellets during glauconitization introduced minor moldic porosity. Limited burial produced minor physical compaction and only slightly reduced porosity. Abundant hematite precipitation during exhumation greatly decreased porosity locally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geology
Journal of Geology 地学-地质学
CiteScore
3.50
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology. The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信