非交换移位对称函数

Robert Laugwitz, V. Retakh
{"title":"非交换移位对称函数","authors":"Robert Laugwitz, V. Retakh","doi":"10.17323/1609-4514-2020-20-1-93-126","DOIUrl":null,"url":null,"abstract":"We introduce a ring of noncommutative shifted symmetric functions based on an integer-indexed sequence of shift parameters. Using generating series and quasideterminants, this multiparameter approach produces deformations of the ring of noncommutative symmetric functions. Shifted versions of ribbon Schur functions are defined and form a basis for the ring. Further, we produce analogues of Jacobi-Trudi and N\\\"agelsbach-Kostka formulas, a duality anti-algebra isomorphism, shifted quasi-Schur functions, and Giambelli's formula in this setup. In addition, an analogue of power sums is provided, satisfying versions of Wronski and Newton formulas. Finally, a realization of these noncommutative shifted symmetric functions as rational functions in noncommuting variables is given. These realizations have a shifted symmetry under exchange of the variables and are well-behaved under extension of the list of variables.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncommutative Shifted Symmetric Functions\",\"authors\":\"Robert Laugwitz, V. Retakh\",\"doi\":\"10.17323/1609-4514-2020-20-1-93-126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a ring of noncommutative shifted symmetric functions based on an integer-indexed sequence of shift parameters. Using generating series and quasideterminants, this multiparameter approach produces deformations of the ring of noncommutative symmetric functions. Shifted versions of ribbon Schur functions are defined and form a basis for the ring. Further, we produce analogues of Jacobi-Trudi and N\\\\\\\"agelsbach-Kostka formulas, a duality anti-algebra isomorphism, shifted quasi-Schur functions, and Giambelli's formula in this setup. In addition, an analogue of power sums is provided, satisfying versions of Wronski and Newton formulas. Finally, a realization of these noncommutative shifted symmetric functions as rational functions in noncommuting variables is given. These realizations have a shifted symmetry under exchange of the variables and are well-behaved under extension of the list of variables.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2020-20-1-93-126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2020-20-1-93-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个基于移位参数的整数索引序列的非对易移位对称函数环。利用生成级数和拟行列式,这种多参数方法产生非对易对称函数环的变形。定义了带状Schur函数的移位版本,并形成了环的基础。进一步的我们生产Jacobi-Trudi和N的类似物\“agelsbach-Kostka公式,对偶反代数同构,移位拟Schur函数和Giambelli公式。此外,还提供了幂和的模拟,满足了Wronski和Newton公式的版本。最后,给出了这些非对易移位对称函数在非对易变量中作为有理函数的实现在变量交换下具有ift对称性,在变量列表的扩展下表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Noncommutative Shifted Symmetric Functions
We introduce a ring of noncommutative shifted symmetric functions based on an integer-indexed sequence of shift parameters. Using generating series and quasideterminants, this multiparameter approach produces deformations of the ring of noncommutative symmetric functions. Shifted versions of ribbon Schur functions are defined and form a basis for the ring. Further, we produce analogues of Jacobi-Trudi and N\"agelsbach-Kostka formulas, a duality anti-algebra isomorphism, shifted quasi-Schur functions, and Giambelli's formula in this setup. In addition, an analogue of power sums is provided, satisfying versions of Wronski and Newton formulas. Finally, a realization of these noncommutative shifted symmetric functions as rational functions in noncommuting variables is given. These realizations have a shifted symmetry under exchange of the variables and are well-behaved under extension of the list of variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信