实Banach空间中的几何不等式及其应用

IF 1.4 4区 数学 Q1 MATHEMATICS
C. E. Chidume
{"title":"实Banach空间中的几何不等式及其应用","authors":"C. E. Chidume","doi":"10.37193/cjm.2023.01.07","DOIUrl":null,"url":null,"abstract":"\"In this paper, new geometric inequalities are established in real Banach spaces. As an application, a new iterative algorithm is proposed for approximating a solution of a split equality fixed point problem (SEFPP) for a quasi-$\\phi$-nonexpansive semigroup. It is proved that the sequence generated by the algorithm converges {\\it strongly} to a solution of the SEFPP in $p$-uniformly convex and uniformly smooth real Banach spaces, $p>1$. Furthermore, the theorem proved is applied to approximate a solution of a variational inequality problem. All the theorems proved are applicable, in particular, in $L_p$, $l_p$ and the Sobolev spaces, $W_p^m(\\Omega)$, for $p$ such that $2","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric inequalities in real Banach spaces with applications\",\"authors\":\"C. E. Chidume\",\"doi\":\"10.37193/cjm.2023.01.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, new geometric inequalities are established in real Banach spaces. As an application, a new iterative algorithm is proposed for approximating a solution of a split equality fixed point problem (SEFPP) for a quasi-$\\\\phi$-nonexpansive semigroup. It is proved that the sequence generated by the algorithm converges {\\\\it strongly} to a solution of the SEFPP in $p$-uniformly convex and uniformly smooth real Banach spaces, $p>1$. Furthermore, the theorem proved is applied to approximate a solution of a variational inequality problem. All the theorems proved are applicable, in particular, in $L_p$, $l_p$ and the Sobolev spaces, $W_p^m(\\\\Omega)$, for $p$ such that $2\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.01.07\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.07","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在实Banach空间中建立了新的几何不等式。作为应用,提出了一种新的迭代算法来逼近拟-$\ φ $-非扩张半群的分裂等式不动点问题(SEFPP)的解。证明了该算法生成的序列强收敛于$p$-一致凸和一致光滑实Banach空间$p>1$中的一个SEFPP解。进一步,将所证明的定理应用于一类变分不等式问题的近似解。所有证明的定理都是适用的,特别是在$L_p$, $L_p$和Sobolev空间,$W_p^m(\Omega)$中,对于$p$使得$2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric inequalities in real Banach spaces with applications
"In this paper, new geometric inequalities are established in real Banach spaces. As an application, a new iterative algorithm is proposed for approximating a solution of a split equality fixed point problem (SEFPP) for a quasi-$\phi$-nonexpansive semigroup. It is proved that the sequence generated by the algorithm converges {\it strongly} to a solution of the SEFPP in $p$-uniformly convex and uniformly smooth real Banach spaces, $p>1$. Furthermore, the theorem proved is applied to approximate a solution of a variational inequality problem. All the theorems proved are applicable, in particular, in $L_p$, $l_p$ and the Sobolev spaces, $W_p^m(\Omega)$, for $p$ such that $2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信