趋磁细菌衍生的Mms6基因帮助M2巨噬细胞形成磁性生物纳米颗粒,以防止小鼠脊髓损伤后的铁下沉和促进运动功能恢复

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chunyan Fu, Xingjia Mao, Xiaoqin Jin, Tong Zuo, Mingzhi Zheng, Jingyu Wang, Yunpeng Fan, Lintao Xu, Junsheng Lou, Dongling Shi, Jinjie Zhong, Yingying Chen, Linlin Wang
{"title":"趋磁细菌衍生的Mms6基因帮助M2巨噬细胞形成磁性生物纳米颗粒,以防止小鼠脊髓损伤后的铁下沉和促进运动功能恢复","authors":"Chunyan Fu,&nbsp;Xingjia Mao,&nbsp;Xiaoqin Jin,&nbsp;Tong Zuo,&nbsp;Mingzhi Zheng,&nbsp;Jingyu Wang,&nbsp;Yunpeng Fan,&nbsp;Lintao Xu,&nbsp;Junsheng Lou,&nbsp;Dongling Shi,&nbsp;Jinjie Zhong,&nbsp;Yingying Chen,&nbsp;Linlin Wang","doi":"10.1002/adfm.202305325","DOIUrl":null,"url":null,"abstract":"<p>Magnetotactic bacteria are microaerobic microorganisms that take up iron from solution and crystallize magnetite nanoparticles called magnetosomes, enclosed by membrane intracellularly and mainly formed by the magnetosome membrane-specific 6 (<i>Mms6</i>) gene. M2 macrophages are transfected by magnetotactic bacteria-derived <i>Mms6</i> gene to form magnetic bio-nanoparticles. Under myelin debris-rich hypoxic stress in the spinal cord injury (SCI) microenvironment, <i>Mms6</i>-transfected M2 macrophages can antagonize ferroptosis. Meanwhile, transplantation of <i>Mms6</i>-transfected M2 macrophages into SCI mice through intracerebroventricular or intravenous injection can effectively promote structural repair and locomotor functional recovery. As a proof of concept, this study provides a novel strategy in immune cell therapy, which supports the survival and strengthens the function of M2 macrophages based on magnetic bio-nanoparticles which help M2 macrophages to resist ferroptosis. This study also sheds light on this cross-species applications for treating traumatic injury and inflammatory diseases.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 51","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202305325","citationCount":"0","resultStr":"{\"title\":\"Magnetotactic Bacteria-Derived Mms6 Gene Helps M2 Macrophages to Form Magnetic Bio-Nanoparticles to Prevent Ferroptosis and Promote Locomotor Functional Recovery after Spinal Cord Injury in Mice\",\"authors\":\"Chunyan Fu,&nbsp;Xingjia Mao,&nbsp;Xiaoqin Jin,&nbsp;Tong Zuo,&nbsp;Mingzhi Zheng,&nbsp;Jingyu Wang,&nbsp;Yunpeng Fan,&nbsp;Lintao Xu,&nbsp;Junsheng Lou,&nbsp;Dongling Shi,&nbsp;Jinjie Zhong,&nbsp;Yingying Chen,&nbsp;Linlin Wang\",\"doi\":\"10.1002/adfm.202305325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetotactic bacteria are microaerobic microorganisms that take up iron from solution and crystallize magnetite nanoparticles called magnetosomes, enclosed by membrane intracellularly and mainly formed by the magnetosome membrane-specific 6 (<i>Mms6</i>) gene. M2 macrophages are transfected by magnetotactic bacteria-derived <i>Mms6</i> gene to form magnetic bio-nanoparticles. Under myelin debris-rich hypoxic stress in the spinal cord injury (SCI) microenvironment, <i>Mms6</i>-transfected M2 macrophages can antagonize ferroptosis. Meanwhile, transplantation of <i>Mms6</i>-transfected M2 macrophages into SCI mice through intracerebroventricular or intravenous injection can effectively promote structural repair and locomotor functional recovery. As a proof of concept, this study provides a novel strategy in immune cell therapy, which supports the survival and strengthens the function of M2 macrophages based on magnetic bio-nanoparticles which help M2 macrophages to resist ferroptosis. This study also sheds light on this cross-species applications for treating traumatic injury and inflammatory diseases.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"33 51\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202305325\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305325\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305325","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

趋磁细菌是一种微需氧微生物,从溶液中吸收铁并结晶称为磁小体的磁铁矿纳米颗粒,被细胞内的膜包围,主要由磁小体膜特异性6(Mms6)基因形成。M2巨噬细胞被趋磁细菌衍生的Mms6基因转染,形成磁性生物纳米颗粒。在脊髓损伤(SCI)微环境中富含髓鞘碎片的缺氧应激下,Mms6转染的M2巨噬细胞可以拮抗脱铁性贫血。同时,通过侧脑室或静脉注射将Mms6转染的M2巨噬细胞移植到SCI小鼠体内,可以有效促进结构修复和运动功能恢复。作为概念的证明,本研究提供了一种免疫细胞治疗的新策略,该策略基于磁性生物纳米颗粒来支持M2巨噬细胞的生存并增强其功能,从而帮助M2巨噬细胞抵抗脱铁性贫血。这项研究还阐明了这种跨物种应用于治疗创伤和炎症性疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetotactic Bacteria-Derived Mms6 Gene Helps M2 Macrophages to Form Magnetic Bio-Nanoparticles to Prevent Ferroptosis and Promote Locomotor Functional Recovery after Spinal Cord Injury in Mice

Magnetotactic Bacteria-Derived Mms6 Gene Helps M2 Macrophages to Form Magnetic Bio-Nanoparticles to Prevent Ferroptosis and Promote Locomotor Functional Recovery after Spinal Cord Injury in Mice

Magnetotactic bacteria are microaerobic microorganisms that take up iron from solution and crystallize magnetite nanoparticles called magnetosomes, enclosed by membrane intracellularly and mainly formed by the magnetosome membrane-specific 6 (Mms6) gene. M2 macrophages are transfected by magnetotactic bacteria-derived Mms6 gene to form magnetic bio-nanoparticles. Under myelin debris-rich hypoxic stress in the spinal cord injury (SCI) microenvironment, Mms6-transfected M2 macrophages can antagonize ferroptosis. Meanwhile, transplantation of Mms6-transfected M2 macrophages into SCI mice through intracerebroventricular or intravenous injection can effectively promote structural repair and locomotor functional recovery. As a proof of concept, this study provides a novel strategy in immune cell therapy, which supports the survival and strengthens the function of M2 macrophages based on magnetic bio-nanoparticles which help M2 macrophages to resist ferroptosis. This study also sheds light on this cross-species applications for treating traumatic injury and inflammatory diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信