周期映射的全局刚性

IF 0.9 1区 数学 Q2 MATHEMATICS
B. Farb
{"title":"周期映射的全局刚性","authors":"B. Farb","doi":"10.1090/jag/809","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M Subscript g comma n\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal M}_{g,n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> denote the moduli space of smooth, genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g\\geq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> curves with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n\\geq 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> marked points. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Subscript h\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mi>h</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal A}_h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> denote the moduli space of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\">\n <mml:semantics>\n <mml:mi>h</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-dimensional, principally polarized abelian varieties. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g\\geq 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h less-than-or-equal-to g\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h\\leq g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. If <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F colon script upper M Subscript g comma n Baseline right-arrow script upper A Subscript upper H Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>F</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>g</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mi>H</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">F:{\\mathcal M}_{g,n} \\to {\\mathcal A}_H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a nonholomorphic map, then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h equals g\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>h</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>g</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">h=g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the classical period mapping, assigning to a Riemann surface <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> its Jacobian.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global rigidity of the period mapping\",\"authors\":\"B. Farb\",\"doi\":\"10.1090/jag/809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M Subscript g comma n\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>g</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathcal M}_{g,n}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> denote the moduli space of smooth, genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g greater-than-or-equal-to 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g\\\\geq 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> curves with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>n</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\geq 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> marked points. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper A Subscript h\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mi>h</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathcal A}_h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> denote the moduli space of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\">\\n <mml:semantics>\\n <mml:mi>h</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-dimensional, principally polarized abelian varieties. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g greater-than-or-equal-to 3\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g\\\\geq 3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h less-than-or-equal-to g\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>h</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h\\\\leq g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. If <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F colon script upper M Subscript g comma n Baseline right-arrow script upper A Subscript upper H Baseline\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>F</mml:mi>\\n <mml:mo>:</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>g</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">A</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mi>H</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F:{\\\\mathcal M}_{g,n} \\\\to {\\\\mathcal A}_H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is a nonholomorphic map, then <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h equals g\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>h</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">h=g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the classical period mapping, assigning to a Riemann surface <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> its Jacobian.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/809\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/809","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

让 M g , n {\ 公元mathcal} {g, n} denote的平滑,属moduli太空》 用g≥1 g \ geq曲线 n≥0 \ geq 0标记分。把h和h的维空间分开,父异母变种的分布空间分开。让 g≥3 g \ geq和 g h≤h \ leq g。如果 F : M g , n → A H F: {\ mathcal M} {g的,n} \ {\ mathcal百万}_H是个nonholomorphic文件夹,然后 h = F g h = g和F是古典期《绘图,assigning to a是一个类比地面X X Jacobian。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global rigidity of the period mapping

Let M g , n {\mathcal M}_{g,n} denote the moduli space of smooth, genus g 1 g\geq 1 curves with n 0 n\geq 0 marked points. Let A h {\mathcal A}_h denote the moduli space of h h -dimensional, principally polarized abelian varieties. Let g 3 g\geq 3 and h g h\leq g . If F : M g , n A H F:{\mathcal M}_{g,n} \to {\mathcal A}_H is a nonholomorphic map, then h = g h=g and F F is the classical period mapping, assigning to a Riemann surface X X its Jacobian.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信