利用MAX30102传感器检测指尖和手腕不同位置的心率信号性能比较

IF 0.5 Q4 ENGINEERING, BIOMEDICAL
R. Gunawan, A. Andang, Muhammad Ridwan
{"title":"利用MAX30102传感器检测指尖和手腕不同位置的心率信号性能比较","authors":"R. Gunawan, A. Andang, Muhammad Ridwan","doi":"10.4028/p-op1nzx","DOIUrl":null,"url":null,"abstract":"Abstract. Measuring vital body signals is essential to measure basic body functions, prevent misdiagnosis, detect underlying health problems and motivate healthy lifestyle changes. Vital body signals are measured at the fingertips because the skin is thin, and the blood vessels are transparent. Visible light is passed at the fingertips, and the pulses generated are still acceptable on the outer nail. However, the body's vital signal measuring device continuously attached to the fingertip causes discomfort to the user. Therefore, in this study, it is proposed to measure the body's vital signals in other body parts. The wrist was chosen to be attached to the body's vital signal measuring device because the measuring device attached to the wrist allows it to continue to be used. This study aims to measure the body's vital signals, especially heart rate, on the wrist so that the correlation level of the measurement data is known. The main contribution of this study is built an electronic system to measure vital body signals, especially heart rate at the wrist with the help of the MAX30102 sensor that uses visible light with 650 - 670 nm. The MAX30102 sensor, which uses visible light with 650 - 670 nm, was selected for measurement. The ratio of the light reflected through the fingertips compared to the wrist. The result of measuring the heart rate signal on the wrist is in the form of a relatively flat wave so that the data sharpening process is carried out using the detrend method. The results showed that the measurement of heart rate signals at the wrist and fingertips of 15 respondents had accuration 85%. The accuration value shows that the data from the heart rate signal at the wrist is closely correlated with the data from the measurement of the heart rate signal at the fingertips. Therefore, measurements of heart rate signals, usually performed on the fingertips, can also be performed on the wrist. From the test results with a strong accuration, measurements are always taken when the hand can measure the place to measure vital signals, which is usually done at the fingertips.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Comparison for Hearth Rate Signal Detection for Different Location in Fingertip and Wrist Using Sensor MAX30102\",\"authors\":\"R. Gunawan, A. Andang, Muhammad Ridwan\",\"doi\":\"10.4028/p-op1nzx\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Measuring vital body signals is essential to measure basic body functions, prevent misdiagnosis, detect underlying health problems and motivate healthy lifestyle changes. Vital body signals are measured at the fingertips because the skin is thin, and the blood vessels are transparent. Visible light is passed at the fingertips, and the pulses generated are still acceptable on the outer nail. However, the body's vital signal measuring device continuously attached to the fingertip causes discomfort to the user. Therefore, in this study, it is proposed to measure the body's vital signals in other body parts. The wrist was chosen to be attached to the body's vital signal measuring device because the measuring device attached to the wrist allows it to continue to be used. This study aims to measure the body's vital signals, especially heart rate, on the wrist so that the correlation level of the measurement data is known. The main contribution of this study is built an electronic system to measure vital body signals, especially heart rate at the wrist with the help of the MAX30102 sensor that uses visible light with 650 - 670 nm. The MAX30102 sensor, which uses visible light with 650 - 670 nm, was selected for measurement. The ratio of the light reflected through the fingertips compared to the wrist. The result of measuring the heart rate signal on the wrist is in the form of a relatively flat wave so that the data sharpening process is carried out using the detrend method. The results showed that the measurement of heart rate signals at the wrist and fingertips of 15 respondents had accuration 85%. The accuration value shows that the data from the heart rate signal at the wrist is closely correlated with the data from the measurement of the heart rate signal at the fingertips. Therefore, measurements of heart rate signals, usually performed on the fingertips, can also be performed on the wrist. From the test results with a strong accuration, measurements are always taken when the hand can measure the place to measure vital signals, which is usually done at the fingertips.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-op1nzx\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-op1nzx","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要测量重要身体信号对于测量基本身体功能、防止误诊、发现潜在健康问题和促进健康生活方式的改变至关重要。由于皮肤很薄,血管是透明的,所以重要的身体信号是在指尖测量的。可见光通过指尖,产生的脉冲在外指甲上仍然是可以接受的。然而,人体的生命信号测量装置持续附着在指尖会给使用者带来不适。因此,本研究提出在身体其他部位测量人体的生命信号。之所以选择手腕作为人体生命信号测量装置,是因为手腕上的测量装置可以让它继续使用。本研究旨在在手腕上测量人体的生命信号,特别是心率,从而了解测量数据的相关水平。本研究的主要贡献是在MAX30102传感器的帮助下,构建了一个电子系统来测量重要的身体信号,特别是手腕心率,该传感器使用650 - 670 nm的可见光。MAX30102传感器采用可见光650 - 670 nm进行测量。通过指尖反射的光与手腕反射的光的比率。测量手腕上的心率信号的结果是相对平坦的波的形式,因此使用趋势法进行数据锐化处理。结果表明,15名被测者腕部和指尖的心率信号测量准确率为85%。准确度值表明,腕部心率信号的测量数据与指尖心率信号的测量数据密切相关。因此,通常在指尖上进行的心率信号测量也可以在手腕上进行。从准确度高的测试结果来看,测量总是在手可以测量的地方进行,这通常是在指尖完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Comparison for Hearth Rate Signal Detection for Different Location in Fingertip and Wrist Using Sensor MAX30102
Abstract. Measuring vital body signals is essential to measure basic body functions, prevent misdiagnosis, detect underlying health problems and motivate healthy lifestyle changes. Vital body signals are measured at the fingertips because the skin is thin, and the blood vessels are transparent. Visible light is passed at the fingertips, and the pulses generated are still acceptable on the outer nail. However, the body's vital signal measuring device continuously attached to the fingertip causes discomfort to the user. Therefore, in this study, it is proposed to measure the body's vital signals in other body parts. The wrist was chosen to be attached to the body's vital signal measuring device because the measuring device attached to the wrist allows it to continue to be used. This study aims to measure the body's vital signals, especially heart rate, on the wrist so that the correlation level of the measurement data is known. The main contribution of this study is built an electronic system to measure vital body signals, especially heart rate at the wrist with the help of the MAX30102 sensor that uses visible light with 650 - 670 nm. The MAX30102 sensor, which uses visible light with 650 - 670 nm, was selected for measurement. The ratio of the light reflected through the fingertips compared to the wrist. The result of measuring the heart rate signal on the wrist is in the form of a relatively flat wave so that the data sharpening process is carried out using the detrend method. The results showed that the measurement of heart rate signals at the wrist and fingertips of 15 respondents had accuration 85%. The accuration value shows that the data from the heart rate signal at the wrist is closely correlated with the data from the measurement of the heart rate signal at the fingertips. Therefore, measurements of heart rate signals, usually performed on the fingertips, can also be performed on the wrist. From the test results with a strong accuration, measurements are always taken when the hand can measure the place to measure vital signals, which is usually done at the fingertips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信