Muhammad Shahzeb Khan, M. Asif, Amina Khatoon, Shafia Arshad, Shagufta Usman, Iqra Karim
{"title":"分子印迹聚合物:有前途的人类病毒检测工具","authors":"Muhammad Shahzeb Khan, M. Asif, Amina Khatoon, Shafia Arshad, Shagufta Usman, Iqra Karim","doi":"10.21743/pjaec/2021.12.01","DOIUrl":null,"url":null,"abstract":"Molecular imprinting is an attractive research area for synthesizing unique functional polymers with high selectivity due to template oriented active sites. Molecularly imprinted polymers (MIPs) have a wide range of applications in chemical and biological sensing, drug delivery, and solidphase extraction owing to mechanical stability, reversibility, reproducibility, and cross-validity. MIPs are compatible with natural antibodies and are being used as antibody mimics/receptors in the biomedical field. Today, viral detection is the most popular research area due to emerging viral diseases with genetic variability and drug resistance. Therefore, there is a need to control viral infections by discriminative recognition of the viral pathogens. This review summarizes the literature on the detection of human viruses by using MIPs.","PeriodicalId":19846,"journal":{"name":"Pakistan Journal of Analytical & Environmental Chemistry","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecularly Imprinted Polymers: Promising Tool for the Human Virus Detection\",\"authors\":\"Muhammad Shahzeb Khan, M. Asif, Amina Khatoon, Shafia Arshad, Shagufta Usman, Iqra Karim\",\"doi\":\"10.21743/pjaec/2021.12.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular imprinting is an attractive research area for synthesizing unique functional polymers with high selectivity due to template oriented active sites. Molecularly imprinted polymers (MIPs) have a wide range of applications in chemical and biological sensing, drug delivery, and solidphase extraction owing to mechanical stability, reversibility, reproducibility, and cross-validity. MIPs are compatible with natural antibodies and are being used as antibody mimics/receptors in the biomedical field. Today, viral detection is the most popular research area due to emerging viral diseases with genetic variability and drug resistance. Therefore, there is a need to control viral infections by discriminative recognition of the viral pathogens. This review summarizes the literature on the detection of human viruses by using MIPs.\",\"PeriodicalId\":19846,\"journal\":{\"name\":\"Pakistan Journal of Analytical & Environmental Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Analytical & Environmental Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21743/pjaec/2021.12.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Analytical & Environmental Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21743/pjaec/2021.12.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Molecularly Imprinted Polymers: Promising Tool for the Human Virus Detection
Molecular imprinting is an attractive research area for synthesizing unique functional polymers with high selectivity due to template oriented active sites. Molecularly imprinted polymers (MIPs) have a wide range of applications in chemical and biological sensing, drug delivery, and solidphase extraction owing to mechanical stability, reversibility, reproducibility, and cross-validity. MIPs are compatible with natural antibodies and are being used as antibody mimics/receptors in the biomedical field. Today, viral detection is the most popular research area due to emerging viral diseases with genetic variability and drug resistance. Therefore, there is a need to control viral infections by discriminative recognition of the viral pathogens. This review summarizes the literature on the detection of human viruses by using MIPs.