具有Clarke子微分的非瞬时脉冲二阶随机McKean-Vlasov演化系统的最优控制

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
K. Anukiruthika, N. Durga, P. Muthukumar
{"title":"具有Clarke子微分的非瞬时脉冲二阶随机McKean-Vlasov演化系统的最优控制","authors":"K. Anukiruthika, N. Durga, P. Muthukumar","doi":"10.1515/ijnsns-2021-0321","DOIUrl":null,"url":null,"abstract":"Abstract The optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential and mixed fractional Brownian motion is investigated in this article. The deterministic nonlinear second-order controlled partial differential system is enriched with stochastic perturbations, non-instantaneous impulses, and Clarke subdifferential. In particular, the nonlinearities in the system that rely on the state of the solution are allowed to rely on the corresponding probability distribution of the state. The solvability of the considered system is discussed with the help of stochastic analysis, multivalued analysis, and multivalued fixed point theorem. Further, the existence of optimal control is established with the aid of Balder’s theorem. Finally, an example is provided to illustrate the developed theory.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential\",\"authors\":\"K. Anukiruthika, N. Durga, P. Muthukumar\",\"doi\":\"10.1515/ijnsns-2021-0321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential and mixed fractional Brownian motion is investigated in this article. The deterministic nonlinear second-order controlled partial differential system is enriched with stochastic perturbations, non-instantaneous impulses, and Clarke subdifferential. In particular, the nonlinearities in the system that rely on the state of the solution are allowed to rely on the corresponding probability distribution of the state. The solvability of the considered system is discussed with the help of stochastic analysis, multivalued analysis, and multivalued fixed point theorem. Further, the existence of optimal control is established with the aid of Balder’s theorem. Finally, an example is provided to illustrate the developed theory.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0321\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0321","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有Clarke次微分和混合分数布朗运动的非瞬时脉冲二阶随机McKean-Vlasov演化系统的最优控制问题。确定性非线性二阶控制偏微分系统丰富了随机扰动、非瞬时脉冲和Clarke子微分。特别是,允许系统中依赖于解的状态的非线性依赖于相应状态的概率分布。利用随机分析、多值分析和多值不动点定理,讨论了所考虑系统的可解性。进一步利用Balder定理,证明了最优控制的存在性。最后,给出了一个实例来说明所建立的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential
Abstract The optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential and mixed fractional Brownian motion is investigated in this article. The deterministic nonlinear second-order controlled partial differential system is enriched with stochastic perturbations, non-instantaneous impulses, and Clarke subdifferential. In particular, the nonlinearities in the system that rely on the state of the solution are allowed to rely on the corresponding probability distribution of the state. The solvability of the considered system is discussed with the help of stochastic analysis, multivalued analysis, and multivalued fixed point theorem. Further, the existence of optimal control is established with the aid of Balder’s theorem. Finally, an example is provided to illustrate the developed theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信