具有皮卡德数1的素数因子的法诺四倍

IF 0.5 4区 数学 Q3 MATHEMATICS
S. A. Secci
{"title":"具有皮卡德数1的素数因子的法诺四倍","authors":"S. A. Secci","doi":"10.1515/advgeom-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract We prove a classification result for smooth complex Fano fourfolds of Picard number 3 having a prime divisor of Picard number 1, after a characterisation result in arbitrary dimension by Casagrande and Druel [5]. These varieties are obtained by blowing-up a ℙ1-bundle over a smooth Fano variety of Picard number 1 along a codimension 2 subvariety. We study in detail the case of dimension 4, and show that they form 28 families. We compute the main numerical invariants, determine the base locus of the anticanonical system, and study their deformations to give an upper bound to the dimension of the base of the Kuranishi family of a general member.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"23 1","pages":"267 - 280"},"PeriodicalIF":0.5000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fano fourfolds having a prime divisor of Picard number 1\",\"authors\":\"S. A. Secci\",\"doi\":\"10.1515/advgeom-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove a classification result for smooth complex Fano fourfolds of Picard number 3 having a prime divisor of Picard number 1, after a characterisation result in arbitrary dimension by Casagrande and Druel [5]. These varieties are obtained by blowing-up a ℙ1-bundle over a smooth Fano variety of Picard number 1 along a codimension 2 subvariety. We study in detail the case of dimension 4, and show that they form 28 families. We compute the main numerical invariants, determine the base locus of the anticanonical system, and study their deformations to give an upper bound to the dimension of the base of the Kuranishi family of a general member.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"23 1\",\"pages\":\"267 - 280\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2023-0002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要我们在Casagrande和Druel[5]的任意维刻画结果之后,证明了具有Picard数1的素数除数的Picard数3的光滑复Fano四重的分类结果。这些品种是通过炸毁ℙ在Picard数1的光滑Fano变种上沿着余维数2的子变种进行1-回旋。我们详细研究了维度4的情况,并表明它们形成了28个家族。我们计算了主要的数值不变量,确定了反正则系统的基轨迹,并研究了它们的变形,给出了一般成员Kuranishi族的基维数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fano fourfolds having a prime divisor of Picard number 1
Abstract We prove a classification result for smooth complex Fano fourfolds of Picard number 3 having a prime divisor of Picard number 1, after a characterisation result in arbitrary dimension by Casagrande and Druel [5]. These varieties are obtained by blowing-up a ℙ1-bundle over a smooth Fano variety of Picard number 1 along a codimension 2 subvariety. We study in detail the case of dimension 4, and show that they form 28 families. We compute the main numerical invariants, determine the base locus of the anticanonical system, and study their deformations to give an upper bound to the dimension of the base of the Kuranishi family of a general member.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信