{"title":"电阻率层析成像用于永冻土界面探测的正演模型系统评价","authors":"T. Herring, A. Lewkowicz","doi":"10.1002/ppp.2141","DOIUrl":null,"url":null,"abstract":"The accuracy of electrical resistivity tomography (ERT) as a method for locating frozen‐to‐unfrozen interfaces in permafrost environments was investigated systematically for simplified scenarios using forward modeling. The impacts of varying the resistivity, thickness, and lateral continuity of the frozen region, altering the thickness of the surface thaw layer, and of differing array types were evaluated in relation to the detection and positioning of frozen–unfrozen interfaces. The results from these simple scenarios show that boundaries between frozen and unfrozen ground are more accurately indicated by maximum gradients rather than a fixed threshold value based on the resistivity at the base of the surface thawed layer. The resistivity of the frozen region plays a significant role in interpreted boundary locations, with high resistivity values causing a decrease in model sensitivity at depth and increased uncertainty in the interpreted base of the frozen zone, particularly in laterally continuous permafrost. Error in the interpreted base of the frozen zone also increases for thicker permafrost bodies, while thaw layer thickness plays a less significant role. In laterally discontinuous permafrost, wider frozen bodies cause the boundary at the base of the frozen region to become less distinct. Array type affected the appearance of the inverted resistivity models and the frozen–unfrozen boundaries located using the threshold method, but boundary locations were comparable among array types when the maximum gradient method was used. This synthetic modeling showed that the boundaries between unfrozen and frozen regions in ERT images should be interpreted with caution, particularly in ice‐rich, laterally continuous permafrost where sensitivity at depth is low. We conclude that forward modeling is a useful tool for permafrost investigations, both for assessing the likelihood of achieving ERT survey goals prior to fieldwork, and as an interpretive aid after field data have been acquired.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"134 - 146"},"PeriodicalIF":3.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A systematic evaluation of electrical resistivity tomography for permafrost interface detection using forward modeling\",\"authors\":\"T. Herring, A. Lewkowicz\",\"doi\":\"10.1002/ppp.2141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of electrical resistivity tomography (ERT) as a method for locating frozen‐to‐unfrozen interfaces in permafrost environments was investigated systematically for simplified scenarios using forward modeling. The impacts of varying the resistivity, thickness, and lateral continuity of the frozen region, altering the thickness of the surface thaw layer, and of differing array types were evaluated in relation to the detection and positioning of frozen–unfrozen interfaces. The results from these simple scenarios show that boundaries between frozen and unfrozen ground are more accurately indicated by maximum gradients rather than a fixed threshold value based on the resistivity at the base of the surface thawed layer. The resistivity of the frozen region plays a significant role in interpreted boundary locations, with high resistivity values causing a decrease in model sensitivity at depth and increased uncertainty in the interpreted base of the frozen zone, particularly in laterally continuous permafrost. Error in the interpreted base of the frozen zone also increases for thicker permafrost bodies, while thaw layer thickness plays a less significant role. In laterally discontinuous permafrost, wider frozen bodies cause the boundary at the base of the frozen region to become less distinct. Array type affected the appearance of the inverted resistivity models and the frozen–unfrozen boundaries located using the threshold method, but boundary locations were comparable among array types when the maximum gradient method was used. This synthetic modeling showed that the boundaries between unfrozen and frozen regions in ERT images should be interpreted with caution, particularly in ice‐rich, laterally continuous permafrost where sensitivity at depth is low. We conclude that forward modeling is a useful tool for permafrost investigations, both for assessing the likelihood of achieving ERT survey goals prior to fieldwork, and as an interpretive aid after field data have been acquired.\",\"PeriodicalId\":54629,\"journal\":{\"name\":\"Permafrost and Periglacial Processes\",\"volume\":\"33 1\",\"pages\":\"134 - 146\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Permafrost and Periglacial Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ppp.2141\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Permafrost and Periglacial Processes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ppp.2141","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A systematic evaluation of electrical resistivity tomography for permafrost interface detection using forward modeling
The accuracy of electrical resistivity tomography (ERT) as a method for locating frozen‐to‐unfrozen interfaces in permafrost environments was investigated systematically for simplified scenarios using forward modeling. The impacts of varying the resistivity, thickness, and lateral continuity of the frozen region, altering the thickness of the surface thaw layer, and of differing array types were evaluated in relation to the detection and positioning of frozen–unfrozen interfaces. The results from these simple scenarios show that boundaries between frozen and unfrozen ground are more accurately indicated by maximum gradients rather than a fixed threshold value based on the resistivity at the base of the surface thawed layer. The resistivity of the frozen region plays a significant role in interpreted boundary locations, with high resistivity values causing a decrease in model sensitivity at depth and increased uncertainty in the interpreted base of the frozen zone, particularly in laterally continuous permafrost. Error in the interpreted base of the frozen zone also increases for thicker permafrost bodies, while thaw layer thickness plays a less significant role. In laterally discontinuous permafrost, wider frozen bodies cause the boundary at the base of the frozen region to become less distinct. Array type affected the appearance of the inverted resistivity models and the frozen–unfrozen boundaries located using the threshold method, but boundary locations were comparable among array types when the maximum gradient method was used. This synthetic modeling showed that the boundaries between unfrozen and frozen regions in ERT images should be interpreted with caution, particularly in ice‐rich, laterally continuous permafrost where sensitivity at depth is low. We conclude that forward modeling is a useful tool for permafrost investigations, both for assessing the likelihood of achieving ERT survey goals prior to fieldwork, and as an interpretive aid after field data have been acquired.
期刊介绍:
Permafrost and Periglacial Processes is an international journal dedicated to the rapid publication of scientific and technical papers concerned with earth surface cryogenic processes, landforms and sediments present in a variety of (Sub) Arctic, Antarctic and High Mountain environments. It provides an efficient vehicle of communication amongst those with an interest in the cold, non-glacial geosciences. The focus is on (1) original research based on geomorphological, hydrological, sedimentological, geotechnical and engineering aspects of these areas and (2) original research carried out upon relict features where the objective has been to reconstruct the nature of the processes and/or palaeoenvironments which gave rise to these features, as opposed to purely stratigraphical considerations. The journal also publishes short communications, reviews, discussions and book reviews. The high scientific standard, interdisciplinary character and worldwide representation of PPP are maintained by regional editorial support and a rigorous refereeing system.