“球面域中分数阶克莱因-戈登方程的一般解析解”

IF 1.4 4区 数学 Q1 MATHEMATICS
C. Fetecau, D. Vieru
{"title":"“球面域中分数阶克莱因-戈登方程的一般解析解”","authors":"C. Fetecau, D. Vieru","doi":"10.37193/cjm.2022.03.16","DOIUrl":null,"url":null,"abstract":"\"Time-fractional Klein–Gordon equation in a sphere is considered for the case of central sym- metry under the time-variable Dirichlet condition. The time-fractional derivative with the power-law kernel is used. The Laplace transform and convenient transformations of the independent variable and unknown func- tion are used to determine the general analytical solution of the problem in the Laplace domain. In order to obtain the solution in the real domain, the inverse Laplace transforms of two functions of exponential type whose expressions are new in the literature have been determined. The similar solution for ordinary Klein– Gordon equation is a limiting case of general solution but a simpler form for this solution is provided. The convergence of general solution to the ordinary solution and the effects of fractional parameter on this solution are graphically underlined.\"","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"General analytical solution of fractional Klein–Gordon equation in a spherical domain\\\"\",\"authors\":\"C. Fetecau, D. Vieru\",\"doi\":\"10.37193/cjm.2022.03.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Time-fractional Klein–Gordon equation in a sphere is considered for the case of central sym- metry under the time-variable Dirichlet condition. The time-fractional derivative with the power-law kernel is used. The Laplace transform and convenient transformations of the independent variable and unknown func- tion are used to determine the general analytical solution of the problem in the Laplace domain. In order to obtain the solution in the real domain, the inverse Laplace transforms of two functions of exponential type whose expressions are new in the literature have been determined. The similar solution for ordinary Klein– Gordon equation is a limiting case of general solution but a simpler form for this solution is provided. The convergence of general solution to the ordinary solution and the effects of fractional parameter on this solution are graphically underlined.\\\"\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.03.16\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.03.16","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在时变狄利克雷条件下,研究了中心对称情况下球上的时间分数阶Klein-Gordon方程。采用带幂律核的时间分数阶导数。利用自变量和未知函数的拉普拉斯变换和方便变换来确定问题在拉普拉斯域中的一般解析解。为了得到实域解,确定了两个指数型函数的拉普拉斯逆变换,这两个函数的表达式在文献中是新的。普通Klein - Gordon方程的类似解是通解的极限情况,但给出了该解的一种更简单的形式。图解地强调了一般解对普通解的收敛性以及分数参数对该解的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"General analytical solution of fractional Klein–Gordon equation in a spherical domain"
"Time-fractional Klein–Gordon equation in a sphere is considered for the case of central sym- metry under the time-variable Dirichlet condition. The time-fractional derivative with the power-law kernel is used. The Laplace transform and convenient transformations of the independent variable and unknown func- tion are used to determine the general analytical solution of the problem in the Laplace domain. In order to obtain the solution in the real domain, the inverse Laplace transforms of two functions of exponential type whose expressions are new in the literature have been determined. The similar solution for ordinary Klein– Gordon equation is a limiting case of general solution but a simpler form for this solution is provided. The convergence of general solution to the ordinary solution and the effects of fractional parameter on this solution are graphically underlined."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信