选择性激光熔化制备AlCoCrFeNi高熵合金裂纹的形成与控制

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-04-01 Epub Date: 2024-04-16 DOI:10.1089/3dp.2022.0142
Shuimiao Wei, Pan Ma, Yacheng Fang, Zhiyu Zhang, Zhilu Yang, Xuerong Shi, Konda Gokuldoss Prashanth
{"title":"选择性激光熔化制备AlCoCrFeNi高熵合金裂纹的形成与控制","authors":"Shuimiao Wei, Pan Ma, Yacheng Fang, Zhiyu Zhang, Zhilu Yang, Xuerong Shi, Konda Gokuldoss Prashanth","doi":"10.1089/3dp.2022.0142","DOIUrl":null,"url":null,"abstract":"<p><p>The equiatomic AlCoCrFeNi high entropy alloy (HEA) is prone to cracking during the additive manufacturing process due to the high cooling rates observed, which limits its application to a large extent. In this study, the selective laser melting (SLM) technique was adopted to fabricate the alloy and the mechanism of crack formation was revealed. Most importantly, a new design strategy was proposed to suppress the generation of cracks, and the optimization of the preparation process was also studied in detail. It is found that the interlaminar crack is related to the heat input at the edge of the specimen, and the internal cracks are formed by solidification cracks. Alloys without interlaminar crack can be prepared by means of combination of the side inclination angle and the process parameters. Side inclination angle optimization provides a possibility for the preparation of crack-free AlCoCrFeNi HEA by SLM.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057539/pdf/","citationCount":"0","resultStr":"{\"title\":\"Crack Formation and Control in an AlCoCrFeNi High Entropy Alloy Fabricated by Selective Laser Melting.\",\"authors\":\"Shuimiao Wei, Pan Ma, Yacheng Fang, Zhiyu Zhang, Zhilu Yang, Xuerong Shi, Konda Gokuldoss Prashanth\",\"doi\":\"10.1089/3dp.2022.0142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The equiatomic AlCoCrFeNi high entropy alloy (HEA) is prone to cracking during the additive manufacturing process due to the high cooling rates observed, which limits its application to a large extent. In this study, the selective laser melting (SLM) technique was adopted to fabricate the alloy and the mechanism of crack formation was revealed. Most importantly, a new design strategy was proposed to suppress the generation of cracks, and the optimization of the preparation process was also studied in detail. It is found that the interlaminar crack is related to the heat input at the edge of the specimen, and the internal cracks are formed by solidification cracks. Alloys without interlaminar crack can be prepared by means of combination of the side inclination angle and the process parameters. Side inclination angle optimization provides a possibility for the preparation of crack-free AlCoCrFeNi HEA by SLM.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057539/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0142\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0142","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

等原子 AlCoCrFeNi 高熵合金(HEA)在增材制造过程中由于冷却速率较高而容易出现裂纹,这在很大程度上限制了其应用。本研究采用选择性激光熔化(SLM)技术制造该合金,并揭示了裂纹形成的机理。最重要的是,提出了一种新的设计策略来抑制裂纹的产生,并详细研究了制备过程的优化。研究发现,层间裂纹与试样边缘的热输入有关,而内部裂纹则由凝固裂纹形成。通过侧倾角和工艺参数的组合,可以制备出没有层间裂纹的合金。侧倾角的优化为通过 SLM 制备无裂纹的 AlCoCrFeNi HEA 提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crack Formation and Control in an AlCoCrFeNi High Entropy Alloy Fabricated by Selective Laser Melting.

The equiatomic AlCoCrFeNi high entropy alloy (HEA) is prone to cracking during the additive manufacturing process due to the high cooling rates observed, which limits its application to a large extent. In this study, the selective laser melting (SLM) technique was adopted to fabricate the alloy and the mechanism of crack formation was revealed. Most importantly, a new design strategy was proposed to suppress the generation of cracks, and the optimization of the preparation process was also studied in detail. It is found that the interlaminar crack is related to the heat input at the edge of the specimen, and the internal cracks are formed by solidification cracks. Alloys without interlaminar crack can be prepared by means of combination of the side inclination angle and the process parameters. Side inclination angle optimization provides a possibility for the preparation of crack-free AlCoCrFeNi HEA by SLM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信