评估Val66Met-BDNF多态性与脑瘫儿童和青少年步态康复有效性之间的关系。

IF 1.4 4区 医学 Q4 NEUROSCIENCES
Bartosz Bagrowski, Marta Czapracka, J. Krásný, Michal Prendecki, J. Dorszewska, M. Jóźwiak
{"title":"评估Val66Met-BDNF多态性与脑瘫儿童和青少年步态康复有效性之间的关系。","authors":"Bartosz Bagrowski, Marta Czapracka, J. Krásný, Michal Prendecki, J. Dorszewska, M. Jóźwiak","doi":"10.55782/ane-2022-001","DOIUrl":null,"url":null,"abstract":"Cerebral palsy (CP) is associated with the non‑progressive damage of upper motor neurons, which is manifested by a variety of symptoms, particularly motor and functional deficits. During the rehabilitation of patients with CP, attention is paid to improving mobility which can have a significant impact on the child's development. The effectiveness of rehabilitation depends on the plasticity of the nervous system, which may be genetically determined. Of importance are the various polymorphisms of the brain derived neurotrophic factor (BDNF) gene. It has been shown that the Val/Val genotype may predispose children to greater improvements in function and its maintenance. However, subjects with the Met allele showed a reduced tendency to improve their motor functions but had significantly better results on indirect tests assessing gait function. Fifty subjects with CP participated in this study. They were divided into two groups by genotype and examined on their rehabilitation progress in terms of improved gait function. The results correlated with other studies describing the relationship between the BDNF genotype and learning motor functions in CP, and with numerous studies on the relationship between BDNF genotype and neuroplasticity in stroke patients. This research provides a basis for the identification of genetic biomarkers in patients with CP which can be used to predict the effects of rehabilitation therapy and help with the development of personalized treatments.","PeriodicalId":7032,"journal":{"name":"Acta neurobiologiae experimentalis","volume":"82 1 1","pages":"1-11"},"PeriodicalIF":1.4000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Assessment of the relationship between Val66Met BDNF polymorphism and the effectiveness of gait rehabilitation in children and adolescents with cerebral palsy.\",\"authors\":\"Bartosz Bagrowski, Marta Czapracka, J. Krásný, Michal Prendecki, J. Dorszewska, M. Jóźwiak\",\"doi\":\"10.55782/ane-2022-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cerebral palsy (CP) is associated with the non‑progressive damage of upper motor neurons, which is manifested by a variety of symptoms, particularly motor and functional deficits. During the rehabilitation of patients with CP, attention is paid to improving mobility which can have a significant impact on the child's development. The effectiveness of rehabilitation depends on the plasticity of the nervous system, which may be genetically determined. Of importance are the various polymorphisms of the brain derived neurotrophic factor (BDNF) gene. It has been shown that the Val/Val genotype may predispose children to greater improvements in function and its maintenance. However, subjects with the Met allele showed a reduced tendency to improve their motor functions but had significantly better results on indirect tests assessing gait function. Fifty subjects with CP participated in this study. They were divided into two groups by genotype and examined on their rehabilitation progress in terms of improved gait function. The results correlated with other studies describing the relationship between the BDNF genotype and learning motor functions in CP, and with numerous studies on the relationship between BDNF genotype and neuroplasticity in stroke patients. This research provides a basis for the identification of genetic biomarkers in patients with CP which can be used to predict the effects of rehabilitation therapy and help with the development of personalized treatments.\",\"PeriodicalId\":7032,\"journal\":{\"name\":\"Acta neurobiologiae experimentalis\",\"volume\":\"82 1 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta neurobiologiae experimentalis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.55782/ane-2022-001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurobiologiae experimentalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55782/ane-2022-001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

脑瘫(CP)与上运动神经元的非进行性损伤有关,表现为多种症状,特别是运动和功能缺陷。在CP患者的康复过程中,注意改善活动能力,这对儿童的发展有重要影响。康复的有效性取决于神经系统的可塑性,这可能是由基因决定的。重要的是脑源性神经营养因子(BDNF)基因的各种多态性。研究表明,Val/Val基因型可能使儿童在功能和维持方面有更大的改善。然而,携带Met等位基因的受试者改善运动功能的倾向降低,但在评估步态功能的间接测试中有明显更好的结果。50名CP患者参加了本研究。将患者按基因型分为两组,观察其步态功能的改善情况。该结果与其他描述脑卒中患者BDNF基因型与学习运动功能之间关系的研究,以及大量关于脑卒中患者BDNF基因型与神经可塑性之间关系的研究相关联。本研究为识别CP患者的遗传生物标志物提供了基础,可用于预测康复治疗的效果,并有助于制定个性化的治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of the relationship between Val66Met BDNF polymorphism and the effectiveness of gait rehabilitation in children and adolescents with cerebral palsy.
Cerebral palsy (CP) is associated with the non‑progressive damage of upper motor neurons, which is manifested by a variety of symptoms, particularly motor and functional deficits. During the rehabilitation of patients with CP, attention is paid to improving mobility which can have a significant impact on the child's development. The effectiveness of rehabilitation depends on the plasticity of the nervous system, which may be genetically determined. Of importance are the various polymorphisms of the brain derived neurotrophic factor (BDNF) gene. It has been shown that the Val/Val genotype may predispose children to greater improvements in function and its maintenance. However, subjects with the Met allele showed a reduced tendency to improve their motor functions but had significantly better results on indirect tests assessing gait function. Fifty subjects with CP participated in this study. They were divided into two groups by genotype and examined on their rehabilitation progress in terms of improved gait function. The results correlated with other studies describing the relationship between the BDNF genotype and learning motor functions in CP, and with numerous studies on the relationship between BDNF genotype and neuroplasticity in stroke patients. This research provides a basis for the identification of genetic biomarkers in patients with CP which can be used to predict the effects of rehabilitation therapy and help with the development of personalized treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
7.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Acta Neurobiologiae Experimentalis (ISSN: 0065-1400 (print), eISSN: 1689-0035) covers all aspects of neuroscience, from molecular and cellular neurobiology of the nervous system, through cellular and systems electrophysiology, brain imaging, functional and comparative neuroanatomy, development and evolution of the nervous system, behavior and neuropsychology to brain aging and pathology, including neuroinformatics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信