包含机械活化层和非活化层的二元混合物燃烧的离散二维模型

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
O. V. Lapshin, V. G. Prokof’ev
{"title":"包含机械活化层和非活化层的二元混合物燃烧的离散二维模型","authors":"O. V. Lapshin,&nbsp;V. G. Prokof’ev","doi":"10.3103/S1061386222030062","DOIUrl":null,"url":null,"abstract":"<p>A discrete 2D model of combustion process in donor–acceptor mixture consisting of activated and non-activated reaction cells was proposed. The influence of the activated composition fraction and cell size on the burning velocity of a combined mixture was analyzed. Calculations showed that an increase in the activated composition fraction elevates the average burning velocity. It was found that burning velocity vs cell size dependence passes through a maximum.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete 2D Model of Combustion in a Binary Mixture Containing Mechanically Activated and Non-Activated Layers\",\"authors\":\"O. V. Lapshin,&nbsp;V. G. Prokof’ev\",\"doi\":\"10.3103/S1061386222030062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A discrete 2D model of combustion process in donor–acceptor mixture consisting of activated and non-activated reaction cells was proposed. The influence of the activated composition fraction and cell size on the burning velocity of a combined mixture was analyzed. Calculations showed that an increase in the activated composition fraction elevates the average burning velocity. It was found that burning velocity vs cell size dependence passes through a maximum.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386222030062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386222030062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

建立了由活化反应池和非活化反应池组成的供体-受体混合物燃烧过程的二维离散模型。分析了活性组分分数和胞池尺寸对复合混合物燃烧速度的影响。计算表明,活性成分分数的增加提高了平均燃烧速度。发现燃烧速度与细胞大小的关系达到最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discrete 2D Model of Combustion in a Binary Mixture Containing Mechanically Activated and Non-Activated Layers

Discrete 2D Model of Combustion in a Binary Mixture Containing Mechanically Activated and Non-Activated Layers

A discrete 2D model of combustion process in donor–acceptor mixture consisting of activated and non-activated reaction cells was proposed. The influence of the activated composition fraction and cell size on the burning velocity of a combined mixture was analyzed. Calculations showed that an increase in the activated composition fraction elevates the average burning velocity. It was found that burning velocity vs cell size dependence passes through a maximum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信