非局部耦合复变Korteweg–de Vries方程中的有理孤子解

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Miao Li, Yi Zhang, Rusuo Ye, Yu Lou
{"title":"非局部耦合复变Korteweg–de Vries方程中的有理孤子解","authors":"Miao Li, Yi Zhang, Rusuo Ye, Yu Lou","doi":"10.1515/ijnsns-2021-0337","DOIUrl":null,"url":null,"abstract":"Abstract In this article, our work oversees with the nonlocal coupled complex modified Korteweg–de Vries equations (cmKdV), which is a nonlocal generalization for coupled cmKdV equations. The n-fold Darboux transformation (DT) is constructed in the form of determinants for the nonlocal coupled cmKdV equations. Via generalized DT method, we obtain the rational soliton solutions describing M-shaped soliton, W-shaped soliton, and the interactions on the plane wave and periodic background. The results can be useful to study the dynamical behaviors of soliton solutions in nonlocal wave models.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational soliton solutions in the nonlocal coupled complex modified Korteweg–de Vries equations\",\"authors\":\"Miao Li, Yi Zhang, Rusuo Ye, Yu Lou\",\"doi\":\"10.1515/ijnsns-2021-0337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, our work oversees with the nonlocal coupled complex modified Korteweg–de Vries equations (cmKdV), which is a nonlocal generalization for coupled cmKdV equations. The n-fold Darboux transformation (DT) is constructed in the form of determinants for the nonlocal coupled cmKdV equations. Via generalized DT method, we obtain the rational soliton solutions describing M-shaped soliton, W-shaped soliton, and the interactions on the plane wave and periodic background. The results can be useful to study the dynamical behaviors of soliton solutions in nonlocal wave models.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0337\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0337","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非局部耦合复修正Korteweg-de Vries方程(cmKdV),它是耦合cmKdV方程的非局部推广。对于非局部耦合cmKdV方程,以行列式的形式构造了n重达布变换(DT)。通过广义DT方法,我们得到了描述m形孤子、w形孤子以及平面波和周期背景相互作用的有理孤子解。所得结果对研究非局域波模型中孤子解的动力学行为具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational soliton solutions in the nonlocal coupled complex modified Korteweg–de Vries equations
Abstract In this article, our work oversees with the nonlocal coupled complex modified Korteweg–de Vries equations (cmKdV), which is a nonlocal generalization for coupled cmKdV equations. The n-fold Darboux transformation (DT) is constructed in the form of determinants for the nonlocal coupled cmKdV equations. Via generalized DT method, we obtain the rational soliton solutions describing M-shaped soliton, W-shaped soliton, and the interactions on the plane wave and periodic background. The results can be useful to study the dynamical behaviors of soliton solutions in nonlocal wave models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信