具有边界时滞参数的双曲型系统控制的变分最优性条件

Q3 Physics and Astronomy
A. Arguchintsev, V. Poplevko, A. Sinitsyn
{"title":"具有边界时滞参数的双曲型系统控制的变分最优性条件","authors":"A. Arguchintsev, V. Poplevko, A. Sinitsyn","doi":"10.35470/2226-4116-2022-11-2-61-66","DOIUrl":null,"url":null,"abstract":"An optimal control problem of a first-order hyperbolic system is studied, in which a boundary condition at one of the ends is determined from a controlled system of ordinary differential equations with constant state lag. Control functions are bounded and measurable functions. The system of ordinary differential equations at the boundary is linear in state. However the matrix of coefficients depends on control functions. Therefore, the optimality condition of Pontryagin’s maximum principle type in this problem is a necessary, but not a sufficient optimality condition. In this paper, the problem is reduced to an optimal control problem of a special system of ordinary differential equations. The proposed approach is based on the use of an exact formula of the cost functional increment. The reduced problem can be solved using a wide range of effective methods used for optimization problems in systems of ordinary differential equations. Problems of this kind arise when modeling thermal separation processes, suppression of mechanical\nvibrations in drilling, wave processes and population dynamics.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational optimality condition in control of hyperbolic systems with boundary delay parameters\",\"authors\":\"A. Arguchintsev, V. Poplevko, A. Sinitsyn\",\"doi\":\"10.35470/2226-4116-2022-11-2-61-66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimal control problem of a first-order hyperbolic system is studied, in which a boundary condition at one of the ends is determined from a controlled system of ordinary differential equations with constant state lag. Control functions are bounded and measurable functions. The system of ordinary differential equations at the boundary is linear in state. However the matrix of coefficients depends on control functions. Therefore, the optimality condition of Pontryagin’s maximum principle type in this problem is a necessary, but not a sufficient optimality condition. In this paper, the problem is reduced to an optimal control problem of a special system of ordinary differential equations. The proposed approach is based on the use of an exact formula of the cost functional increment. The reduced problem can be solved using a wide range of effective methods used for optimization problems in systems of ordinary differential equations. Problems of this kind arise when modeling thermal separation processes, suppression of mechanical\\nvibrations in drilling, wave processes and population dynamics.\",\"PeriodicalId\":37674,\"journal\":{\"name\":\"Cybernetics and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35470/2226-4116-2022-11-2-61-66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2022-11-2-61-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

研究一类一阶双曲型系统的最优控制问题,该系统的一端边界条件由常状态滞后的常微分方程控制系统确定。控制函数是有界的可测量函数。边界处的常微分方程组在状态上是线性的。然而,系数矩阵取决于控制函数。因此,该问题中庞特里亚金最大原理型的最优性条件是必要条件,而不是充分条件。本文将该问题简化为一类特殊常微分方程组的最优控制问题。所提出的方法是基于使用成本函数增量的精确公式。简化后的问题可以用一系列用于常微分方程系统优化问题的有效方法来解决。当模拟热分离过程、钻井中机械振动的抑制、波浪过程和种群动力学时,就会出现这种问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational optimality condition in control of hyperbolic systems with boundary delay parameters
An optimal control problem of a first-order hyperbolic system is studied, in which a boundary condition at one of the ends is determined from a controlled system of ordinary differential equations with constant state lag. Control functions are bounded and measurable functions. The system of ordinary differential equations at the boundary is linear in state. However the matrix of coefficients depends on control functions. Therefore, the optimality condition of Pontryagin’s maximum principle type in this problem is a necessary, but not a sufficient optimality condition. In this paper, the problem is reduced to an optimal control problem of a special system of ordinary differential equations. The proposed approach is based on the use of an exact formula of the cost functional increment. The reduced problem can be solved using a wide range of effective methods used for optimization problems in systems of ordinary differential equations. Problems of this kind arise when modeling thermal separation processes, suppression of mechanical vibrations in drilling, wave processes and population dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信