平面有向图的大多数选择

Pub Date : 2023-06-21 DOI:10.21136/CMJ.2023.0170-22
Weihao Xia, Jihui Wang, Jiansheng Cai
{"title":"平面有向图的大多数选择","authors":"Weihao Xia, Jihui Wang, Jiansheng Cai","doi":"10.21136/CMJ.2023.0170-22","DOIUrl":null,"url":null,"abstract":"A majority coloring of a digraph D with k colors is an assignment π: V(D) → {1, 2, …, k} such that for every v ∈ V(D) we have π(w) = π(v) for at most half of all out-neighbors w ∈ N+(v). A digraph D is majority k-choosable if for any assignment of lists of colors of size k to the vertices, there is a majority coloring of D from these lists. We prove that if U(D) is a 1-planar graph without a 4-cycle, then D is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Majority choosability of 1-planar digraph\",\"authors\":\"Weihao Xia, Jihui Wang, Jiansheng Cai\",\"doi\":\"10.21136/CMJ.2023.0170-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A majority coloring of a digraph D with k colors is an assignment π: V(D) → {1, 2, …, k} such that for every v ∈ V(D) we have π(w) = π(v) for at most half of all out-neighbors w ∈ N+(v). A digraph D is majority k-choosable if for any assignment of lists of colors of size k to the vertices, there is a majority coloring of D from these lists. We prove that if U(D) is a 1-planar graph without a 4-cycle, then D is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0170-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0170-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有k种颜色的有向图D的多数着色是赋值π:V(D)→ {1,2,…,k},使得对于每个v∈v(D),我们对于至多一半的所有外邻居w∈N+(v)具有π(w)=π(v)。有向图D是多数k-可选择的,如果对于大小为k的颜色列表到顶点的任何赋值,这些列表中有D的多数着色。我们证明了如果U(D)是一个没有4-环的1-平面图,那么D是多数3-可选择的。我们还证明了每一个NIC平面有向图都是多数3-可选择的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Majority choosability of 1-planar digraph
A majority coloring of a digraph D with k colors is an assignment π: V(D) → {1, 2, …, k} such that for every v ∈ V(D) we have π(w) = π(v) for at most half of all out-neighbors w ∈ N+(v). A digraph D is majority k-choosable if for any assignment of lists of colors of size k to the vertices, there is a majority coloring of D from these lists. We prove that if U(D) is a 1-planar graph without a 4-cycle, then D is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信