M. Hawash, N. Jaradat, Noor Bawwab, Kamilah Salem, Hadeel Arafat, Yousef Hajyousef, Tahrir Shtayeh, Shorooq Sobuh
{"title":"苯基异恶唑甲酰胺类抗癌药物的设计、合成及生物学评价","authors":"M. Hawash, N. Jaradat, Noor Bawwab, Kamilah Salem, Hadeel Arafat, Yousef Hajyousef, Tahrir Shtayeh, Shorooq Sobuh","doi":"10.1515/hc-2020-0134","DOIUrl":null,"url":null,"abstract":"Abstract The present study aimed to design and synthesize a series of phenyl-isoxazole-carboxamide derivatives and investigate their antitumor and antioxidant activities. The in vitro cytotoxic evaluation was conducted using the MTS assay against four cancer cell lines: hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), in addition to the normal cell line (Hek293T). Besides, the antioxidant activity was evaluated using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. All obtained compounds were found to have potent to moderate activities against Hep3B and MCF-7 cancer cells lines, except compound 2e. It was found that compound 2a has potent activity against HeLa and Hep3B cancer cell lines with IC50 values of 0.91 and 8.02 µM, respectively. The IC50 dose range of the tested compounds against Hep3B was 5.96–28.62 µM, except for 2e, compared with doxorubicin, which has an IC50 value of 2.23 µM. Also, the IC50 value range of the compounds against Hek293T was 112.78–266.66 µM, compared with doxorubicin, which has an IC50 dose of 0.581 µM. The antioxidant activity of the synthesized compounds was weak, and compound 2d showed moderate activity against the DPPH enzyme with an IC50 value of 138.50 µM in comparison with Trolox, which has an IC50 dose of 37.23 µM.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"27 1","pages":"133 - 141"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design, synthesis, and biological evaluation of phenyl-isoxazole-carboxamide derivatives as anticancer agents\",\"authors\":\"M. Hawash, N. Jaradat, Noor Bawwab, Kamilah Salem, Hadeel Arafat, Yousef Hajyousef, Tahrir Shtayeh, Shorooq Sobuh\",\"doi\":\"10.1515/hc-2020-0134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present study aimed to design and synthesize a series of phenyl-isoxazole-carboxamide derivatives and investigate their antitumor and antioxidant activities. The in vitro cytotoxic evaluation was conducted using the MTS assay against four cancer cell lines: hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), in addition to the normal cell line (Hek293T). Besides, the antioxidant activity was evaluated using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. All obtained compounds were found to have potent to moderate activities against Hep3B and MCF-7 cancer cells lines, except compound 2e. It was found that compound 2a has potent activity against HeLa and Hep3B cancer cell lines with IC50 values of 0.91 and 8.02 µM, respectively. The IC50 dose range of the tested compounds against Hep3B was 5.96–28.62 µM, except for 2e, compared with doxorubicin, which has an IC50 value of 2.23 µM. Also, the IC50 value range of the compounds against Hek293T was 112.78–266.66 µM, compared with doxorubicin, which has an IC50 dose of 0.581 µM. The antioxidant activity of the synthesized compounds was weak, and compound 2d showed moderate activity against the DPPH enzyme with an IC50 value of 138.50 µM in comparison with Trolox, which has an IC50 dose of 37.23 µM.\",\"PeriodicalId\":12914,\"journal\":{\"name\":\"Heterocyclic Communications\",\"volume\":\"27 1\",\"pages\":\"133 - 141\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterocyclic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/hc-2020-0134\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2020-0134","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Design, synthesis, and biological evaluation of phenyl-isoxazole-carboxamide derivatives as anticancer agents
Abstract The present study aimed to design and synthesize a series of phenyl-isoxazole-carboxamide derivatives and investigate their antitumor and antioxidant activities. The in vitro cytotoxic evaluation was conducted using the MTS assay against four cancer cell lines: hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), in addition to the normal cell line (Hek293T). Besides, the antioxidant activity was evaluated using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. All obtained compounds were found to have potent to moderate activities against Hep3B and MCF-7 cancer cells lines, except compound 2e. It was found that compound 2a has potent activity against HeLa and Hep3B cancer cell lines with IC50 values of 0.91 and 8.02 µM, respectively. The IC50 dose range of the tested compounds against Hep3B was 5.96–28.62 µM, except for 2e, compared with doxorubicin, which has an IC50 value of 2.23 µM. Also, the IC50 value range of the compounds against Hek293T was 112.78–266.66 µM, compared with doxorubicin, which has an IC50 dose of 0.581 µM. The antioxidant activity of the synthesized compounds was weak, and compound 2d showed moderate activity against the DPPH enzyme with an IC50 value of 138.50 µM in comparison with Trolox, which has an IC50 dose of 37.23 µM.
期刊介绍:
Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.