一类锥体上radon变换的解析反演公式

Cebeiro Javier, Nguyen Mai K., Rollet Genevi`eve, Dumas Laurent
{"title":"一类锥体上radon变换的解析反演公式","authors":"Cebeiro Javier, Nguyen Mai K., Rollet Genevi`eve, Dumas Laurent","doi":"10.32523/2306-6172-2022-10-3-73-83","DOIUrl":null,"url":null,"abstract":"Since the works of Radon and Cormack on the classical Radon transform on straight lines, several generalizations involving integrations on conical surfaces have been studied. In this article, we introduce a new family of conical surfaces with arbitrary vertices of the space and axes through the origin and study the corresponding Radon transform. We derive its analytical inversion in two and three dimensions. Numerical simulations are carried out for the two-dimensional case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN ANALYTIC INVERSION FORMULA FOR A RADON TRANSFORM ON A CLASS OF CONES\",\"authors\":\"Cebeiro Javier, Nguyen Mai K., Rollet Genevi`eve, Dumas Laurent\",\"doi\":\"10.32523/2306-6172-2022-10-3-73-83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the works of Radon and Cormack on the classical Radon transform on straight lines, several generalizations involving integrations on conical surfaces have been studied. In this article, we introduce a new family of conical surfaces with arbitrary vertices of the space and axes through the origin and study the corresponding Radon transform. We derive its analytical inversion in two and three dimensions. Numerical simulations are carried out for the two-dimensional case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2022-10-3-73-83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2022-10-3-73-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自Radon和Cormack关于直线上经典Radon变换的工作以来,研究了几种涉及圆锥曲面上积分的推广。本文通过原点引入了一种新的具有空间任意顶点和轴的圆锥曲面族,并研究了相应的Radon变换。我们推导了它在二维和三维的解析反演。对二维情况进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
AN ANALYTIC INVERSION FORMULA FOR A RADON TRANSFORM ON A CLASS OF CONES
Since the works of Radon and Cormack on the classical Radon transform on straight lines, several generalizations involving integrations on conical surfaces have been studied. In this article, we introduce a new family of conical surfaces with arbitrary vertices of the space and axes through the origin and study the corresponding Radon transform. We derive its analytical inversion in two and three dimensions. Numerical simulations are carried out for the two-dimensional case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信