AS Kirshina, AA Kazakova, E. Kolosova, EA Imasheva, O. Vasileva, OV Zaborova, IM Terenin, A. Muslimov, VV Reshetnikov
{"title":"不同mRNA-LNP疫苗剂量对BALB/c小鼠神经炎症的影响","authors":"AS Kirshina, AA Kazakova, E. Kolosova, EA Imasheva, O. Vasileva, OV Zaborova, IM Terenin, A. Muslimov, VV Reshetnikov","doi":"10.24075/brsmu.2022.068","DOIUrl":null,"url":null,"abstract":"It has been proven that mRNA vaccines are highly effective against the COVID-19 outbreak, and low prevalence of side effects has been shown. However, there are still many gaps in our understanding of the biology and biosafety of nucleic acids as components of lipid nanoparticles (LNPs) most often used as a system for inctracellular delivery of mRNA-based vaccines. It is known that LNPs cause severe injection site inflammation, have broad biodistribution profiles, and are found in multiple tissues of the body, including the brain, after administration. The role of new medications with such pharmacokinetics in inflammation developing in inaccessible organs is poorly understood. The study was aimed to assess the effects of various doses of mRNA-LNP expressing the reporter protein (0, 5, 10, and 20 μg of mRNA encoding the firefly luciferase) on the expression of neuroinflammation markers (Tnfα, Il1β, Gfap, Aif1) in the prefrontal cortex and hypothalamus of laboratory animals 4, 8, and 30 h after the intramuscular injection of LNP nanoemulsion. It was shown that mRNA-LNP vaccines in a dose of 10–20 μg of mRNA could enhance Aif1 expression in the hypothalamus 8 h after vaccination, however, no such differences were observed after 30 h. It was found that the Gfap, l11β, Tnfα expression levels in the hypothalamus observed at different times in the experimental groups were different. According to the results, mRNA-LNPs administered by the parenteral route can stimulate temporary activation of microglia in certain time intervals in the dose-dependent and site specific manner.","PeriodicalId":9344,"journal":{"name":"Bulletin of Russian State Medical University","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of various mRNA-LNP vaccine doses on neuroinflammation in BALB/c mice\",\"authors\":\"AS Kirshina, AA Kazakova, E. Kolosova, EA Imasheva, O. Vasileva, OV Zaborova, IM Terenin, A. Muslimov, VV Reshetnikov\",\"doi\":\"10.24075/brsmu.2022.068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been proven that mRNA vaccines are highly effective against the COVID-19 outbreak, and low prevalence of side effects has been shown. However, there are still many gaps in our understanding of the biology and biosafety of nucleic acids as components of lipid nanoparticles (LNPs) most often used as a system for inctracellular delivery of mRNA-based vaccines. It is known that LNPs cause severe injection site inflammation, have broad biodistribution profiles, and are found in multiple tissues of the body, including the brain, after administration. The role of new medications with such pharmacokinetics in inflammation developing in inaccessible organs is poorly understood. The study was aimed to assess the effects of various doses of mRNA-LNP expressing the reporter protein (0, 5, 10, and 20 μg of mRNA encoding the firefly luciferase) on the expression of neuroinflammation markers (Tnfα, Il1β, Gfap, Aif1) in the prefrontal cortex and hypothalamus of laboratory animals 4, 8, and 30 h after the intramuscular injection of LNP nanoemulsion. It was shown that mRNA-LNP vaccines in a dose of 10–20 μg of mRNA could enhance Aif1 expression in the hypothalamus 8 h after vaccination, however, no such differences were observed after 30 h. It was found that the Gfap, l11β, Tnfα expression levels in the hypothalamus observed at different times in the experimental groups were different. According to the results, mRNA-LNPs administered by the parenteral route can stimulate temporary activation of microglia in certain time intervals in the dose-dependent and site specific manner.\",\"PeriodicalId\":9344,\"journal\":{\"name\":\"Bulletin of Russian State Medical University\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Russian State Medical University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24075/brsmu.2022.068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Russian State Medical University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24075/brsmu.2022.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Effects of various mRNA-LNP vaccine doses on neuroinflammation in BALB/c mice
It has been proven that mRNA vaccines are highly effective against the COVID-19 outbreak, and low prevalence of side effects has been shown. However, there are still many gaps in our understanding of the biology and biosafety of nucleic acids as components of lipid nanoparticles (LNPs) most often used as a system for inctracellular delivery of mRNA-based vaccines. It is known that LNPs cause severe injection site inflammation, have broad biodistribution profiles, and are found in multiple tissues of the body, including the brain, after administration. The role of new medications with such pharmacokinetics in inflammation developing in inaccessible organs is poorly understood. The study was aimed to assess the effects of various doses of mRNA-LNP expressing the reporter protein (0, 5, 10, and 20 μg of mRNA encoding the firefly luciferase) on the expression of neuroinflammation markers (Tnfα, Il1β, Gfap, Aif1) in the prefrontal cortex and hypothalamus of laboratory animals 4, 8, and 30 h after the intramuscular injection of LNP nanoemulsion. It was shown that mRNA-LNP vaccines in a dose of 10–20 μg of mRNA could enhance Aif1 expression in the hypothalamus 8 h after vaccination, however, no such differences were observed after 30 h. It was found that the Gfap, l11β, Tnfα expression levels in the hypothalamus observed at different times in the experimental groups were different. According to the results, mRNA-LNPs administered by the parenteral route can stimulate temporary activation of microglia in certain time intervals in the dose-dependent and site specific manner.
期刊介绍:
Bulletin of Russian State Medical University (Bulletin of RSMU, ISSN Print 2500–1094, ISSN Online 2542–1204) is a peer-reviewed medical journal of Pirogov Russian National Research Medical University (Moscow, Russia). The original language of the journal is Russian (Vestnik Rossiyskogo Gosudarstvennogo Meditsinskogo Universiteta, Vestnik RGMU, ISSN Print 2070–7320, ISSN Online 2070–7339). Founded in 1994, it is issued once every two months publishing articles on clinical medicine and medical and biological sciences, first of all oncology, neurobiology, allergy and immunology, medical genetics, medical microbiology and infectious diseases. Every issue is thematic. Deadlines for manuscript submission are announced in advance. The number of publications on topics in spite of the issue topic is limited. The journal accepts only original articles submitted by their authors, including articles that present methods and techniques, clinical cases and opinions. Authors must guarantee that their work has not been previously published elsewhere in whole or in part and in other languages and is not under consideration by another scientific journal. The journal publishes only one review per issue; the review is ordered by the editors.