生物医学应用刺激反应水凝胶的最新进展

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
Shuyun Liu, Xiaozhuang Li, Lu Han
{"title":"生物医学应用刺激反应水凝胶的最新进展","authors":"Shuyun Liu,&nbsp;Xiaozhuang Li,&nbsp;Lu Han","doi":"10.1049/bsb2.12050","DOIUrl":null,"url":null,"abstract":"<p>Hydrogels exhibit a performance similar to that of the extracellular matrix and are compatible with human tissues and organs. Stimuli-responsive hydrogels that can respond smartly to a variety of stimuli have recently attracted extensive interest for biomedical applications. The response of these hydrogels to various single/multiple stimuli shows great potential for drug delivery, biosensors, wound dressing, cancer therapy, and tissue engineering. This review summarises the recent advances in the design of different stimuli-responsive hydrogels and their biomedical applications. We herein describe the mechanisms underlying the stimulus–response, and summarise the strategies for fabricating stimuli-responsive hydrogels that can respond to single or multiple stimuli from endogenous (i.e. pH, enzymes, glucose, and reactive oxygen species) or exogenous (i.e. magnetic and electric fields, temperature, and photo) sources. The current challenges faced by stimuli-responsive hydrogels are discussed and an outlook on future research directions is provided.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"8 4","pages":"290-306"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12050","citationCount":"0","resultStr":"{\"title\":\"Recent developments in stimuli-responsive hydrogels for biomedical applications\",\"authors\":\"Shuyun Liu,&nbsp;Xiaozhuang Li,&nbsp;Lu Han\",\"doi\":\"10.1049/bsb2.12050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogels exhibit a performance similar to that of the extracellular matrix and are compatible with human tissues and organs. Stimuli-responsive hydrogels that can respond smartly to a variety of stimuli have recently attracted extensive interest for biomedical applications. The response of these hydrogels to various single/multiple stimuli shows great potential for drug delivery, biosensors, wound dressing, cancer therapy, and tissue engineering. This review summarises the recent advances in the design of different stimuli-responsive hydrogels and their biomedical applications. We herein describe the mechanisms underlying the stimulus–response, and summarise the strategies for fabricating stimuli-responsive hydrogels that can respond to single or multiple stimuli from endogenous (i.e. pH, enzymes, glucose, and reactive oxygen species) or exogenous (i.e. magnetic and electric fields, temperature, and photo) sources. The current challenges faced by stimuli-responsive hydrogels are discussed and an outlook on future research directions is provided.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"8 4\",\"pages\":\"290-306\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12050\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶表现出类似于细胞外基质的性能,并且与人体组织和器官相容。刺激反应水凝胶可以对各种刺激做出灵敏的反应,最近引起了生物医学应用的广泛兴趣。这些水凝胶对各种单一/多重刺激的反应在药物输送、生物传感器、伤口敷料、癌症治疗和组织工程方面显示出巨大的潜力。本文综述了不同刺激反应水凝胶的设计及其生物医学应用的最新进展。我们在此描述了刺激反应的机制,并总结了制造刺激反应水凝胶的策略,这种水凝胶可以对来自内源性(即pH、酶、葡萄糖和活性氧)或外源性(即磁场、电场、温度和光)的单一或多种刺激做出反应。讨论了当前刺激响应型水凝胶面临的挑战,并对未来的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent developments in stimuli-responsive hydrogels for biomedical applications

Recent developments in stimuli-responsive hydrogels for biomedical applications

Hydrogels exhibit a performance similar to that of the extracellular matrix and are compatible with human tissues and organs. Stimuli-responsive hydrogels that can respond smartly to a variety of stimuli have recently attracted extensive interest for biomedical applications. The response of these hydrogels to various single/multiple stimuli shows great potential for drug delivery, biosensors, wound dressing, cancer therapy, and tissue engineering. This review summarises the recent advances in the design of different stimuli-responsive hydrogels and their biomedical applications. We herein describe the mechanisms underlying the stimulus–response, and summarise the strategies for fabricating stimuli-responsive hydrogels that can respond to single or multiple stimuli from endogenous (i.e. pH, enzymes, glucose, and reactive oxygen species) or exogenous (i.e. magnetic and electric fields, temperature, and photo) sources. The current challenges faced by stimuli-responsive hydrogels are discussed and an outlook on future research directions is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信