隐藏的数据维度:PCA与自动编码器

IF 1.3 4区 工程技术 Q4 ENGINEERING, INDUSTRIAL
Davide Cacciarelli, M. Kulahci
{"title":"隐藏的数据维度:PCA与自动编码器","authors":"Davide Cacciarelli, M. Kulahci","doi":"10.1080/08982112.2023.2231064","DOIUrl":null,"url":null,"abstract":"Abstract Principal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With more applications of neural network-based methods, autoencoders (AEs) have gained popularity for dimensionality reduction tasks. In this paper, we explore the intriguing relationship between PCA and AEs and demonstrate, through some examples, how these two approaches yield similar results in the case of the so-called linear AEs (LAEs). This study provides insights into the evolving landscape of unsupervised learning and highlights the relevance of both PCA and AEs in modern data analysis.","PeriodicalId":20846,"journal":{"name":"Quality Engineering","volume":"35 1","pages":"741 - 750"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hidden dimensions of the data: PCA vs autoencoders\",\"authors\":\"Davide Cacciarelli, M. Kulahci\",\"doi\":\"10.1080/08982112.2023.2231064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Principal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With more applications of neural network-based methods, autoencoders (AEs) have gained popularity for dimensionality reduction tasks. In this paper, we explore the intriguing relationship between PCA and AEs and demonstrate, through some examples, how these two approaches yield similar results in the case of the so-called linear AEs (LAEs). This study provides insights into the evolving landscape of unsupervised learning and highlights the relevance of both PCA and AEs in modern data analysis.\",\"PeriodicalId\":20846,\"journal\":{\"name\":\"Quality Engineering\",\"volume\":\"35 1\",\"pages\":\"741 - 750\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/08982112.2023.2231064\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08982112.2023.2231064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要主成分分析(PCA)是一种常用的无监督学习方法,在描述分析和推理分析中都有广泛的应用。它被广泛用于表示学习,从数据集中提取关键特征,并在低维空间中可视化。随着神经网络方法的更多应用,自动编码器(AE)在降维任务中越来越受欢迎。在本文中,我们探索了主成分分析和AE之间有趣的关系,并通过一些例子证明了在所谓的线性AE(LAE)的情况下,这两种方法如何产生相似的结果。这项研究深入了解了无监督学习的发展前景,并强调了主成分分析和AE在现代数据分析中的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden dimensions of the data: PCA vs autoencoders
Abstract Principal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With more applications of neural network-based methods, autoencoders (AEs) have gained popularity for dimensionality reduction tasks. In this paper, we explore the intriguing relationship between PCA and AEs and demonstrate, through some examples, how these two approaches yield similar results in the case of the so-called linear AEs (LAEs). This study provides insights into the evolving landscape of unsupervised learning and highlights the relevance of both PCA and AEs in modern data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quality Engineering
Quality Engineering ENGINEERING, INDUSTRIAL-STATISTICS & PROBABILITY
CiteScore
3.90
自引率
10.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Quality Engineering aims to promote a rich exchange among the quality engineering community by publishing papers that describe new engineering methods ready for immediate industrial application or examples of techniques uniquely employed. You are invited to submit manuscripts and application experiences that explore: Experimental engineering design and analysis Measurement system analysis in engineering Engineering process modelling Product and process optimization in engineering Quality control and process monitoring in engineering Engineering regression Reliability in engineering Response surface methodology in engineering Robust engineering parameter design Six Sigma method enhancement in engineering Statistical engineering Engineering test and evaluation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信