克服空间农业食品系统分析中的数据障碍:一个灵活的插补框架

IF 3.4 2区 经济学 Q1 AGRICULTURAL ECONOMICS & POLICY
Jing Yi, Samantha Cohen, Sarah Rehkamp, Patrick Canning, Miguel I. Gómez, Houtian Ge
{"title":"克服空间农业食品系统分析中的数据障碍:一个灵活的插补框架","authors":"Jing Yi,&nbsp;Samantha Cohen,&nbsp;Sarah Rehkamp,&nbsp;Patrick Canning,&nbsp;Miguel I. Gómez,&nbsp;Houtian Ge","doi":"10.1111/1477-9552.12523","DOIUrl":null,"url":null,"abstract":"<p>Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under-determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.</p>","PeriodicalId":14994,"journal":{"name":"Journal of Agricultural Economics","volume":"74 3","pages":"686-701"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1477-9552.12523","citationCount":"0","resultStr":"{\"title\":\"Overcoming data barriers in spatial agri-food systems analysis: A flexible imputation framework\",\"authors\":\"Jing Yi,&nbsp;Samantha Cohen,&nbsp;Sarah Rehkamp,&nbsp;Patrick Canning,&nbsp;Miguel I. Gómez,&nbsp;Houtian Ge\",\"doi\":\"10.1111/1477-9552.12523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under-determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.</p>\",\"PeriodicalId\":14994,\"journal\":{\"name\":\"Journal of Agricultural Economics\",\"volume\":\"74 3\",\"pages\":\"686-701\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1477-9552.12523\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1477-9552.12523\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ECONOMICS & POLICY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Economics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1477-9552.12523","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0

摘要

公共数据的抑制严重限制了空间数据的有用性,阻碍了研究应用。在这种情况下,数据输入是必要的,以处理被抑制的值。我们提出并验证了一种灵活的数据输入方法,可以帮助完成欠确定的数据系统。验证使用蒙特卡罗和优化建模技术从2017年美国农业普查中恢复被抑制的数据表。然后,我们使用计量经济模型来评估替代模型的估算准确性。预测精度的各种指标(即MAPE, BIC等)显示了这种方法准确恢复被抑制数据的灵活性和能力。为了说明我们的方法的价值,我们将牲畜取水估计与输入数据和抑制数据进行比较,以显示当从分析中简单地删除抑制数据时,研究应用中的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Overcoming data barriers in spatial agri-food systems analysis: A flexible imputation framework

Overcoming data barriers in spatial agri-food systems analysis: A flexible imputation framework

Suppressions in public data severely limit the usefulness of spatial data and hinder research applications. In this context, data imputation is necessary to deal with suppressed values. We present and validate a flexible data imputation method that can aid in the completion of under-determined data systems. The validations use Monte Carlo and optimisation modelling techniques to recover suppressed data tables from the 2017 US Census of Agriculture. We then use econometric models to evaluate the accuracy of imputations from alternative models. Various metrics of forecast accuracy (i.e., MAPE, BIC, etc.) show the flexibility and capacity of this approach to accurately recover suppressed data. To illustrate the value of our method, we compare the livestock water withdrawal estimations with imputed data and suppressed data to show the bias in research applications when suppressions are simply dropped from analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Economics
Journal of Agricultural Economics 管理科学-农业经济与政策
CiteScore
7.90
自引率
2.90%
发文量
48
审稿时长
>24 weeks
期刊介绍: Published on behalf of the Agricultural Economics Society, the Journal of Agricultural Economics is a leading international professional journal, providing a forum for research into agricultural economics and related disciplines such as statistics, marketing, business management, politics, history and sociology, and their application to issues in the agricultural, food, and related industries; rural communities, and the environment. Each issue of the JAE contains articles, notes and book reviews as well as information relating to the Agricultural Economics Society. Published 3 times a year, it is received by members and institutional subscribers in 69 countries. With contributions from leading international scholars, the JAE is a leading citation for agricultural economics and policy. Published articles either deal with new developments in research and methods of analysis, or apply existing methods and techniques to new problems and situations which are of general interest to the Journal’s international readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信