{"title":"透气性对超音速降落伞稳定性的影响","authors":"Xue Yang","doi":"10.3846/aviation.2021.15131","DOIUrl":null,"url":null,"abstract":"A compressible air permeability model is developed to simulate the aerodynamic performance of the supersonic porous canopy. And a single-degree-of-freedom model is applied to analyse the static stability of the parachute. By using this method, the flow structure of the parachute system with big attack angle is obtained. The aerodynamic moment coefficients of porous and nonporous canopies are compared to discuss the effect of air permeability on stability of the supersonic parachute. The numerical results show that aerodynamic moment coefficient of the system with air permeability has larger oscillation amplitude and value than that without air permeability. This method can be developed as a potential method to select the supersonic parachute initially.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECT OF AIR PERMEABILITY ON STABILITY OF SUPERSONIC PARACHUTE\",\"authors\":\"Xue Yang\",\"doi\":\"10.3846/aviation.2021.15131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compressible air permeability model is developed to simulate the aerodynamic performance of the supersonic porous canopy. And a single-degree-of-freedom model is applied to analyse the static stability of the parachute. By using this method, the flow structure of the parachute system with big attack angle is obtained. The aerodynamic moment coefficients of porous and nonporous canopies are compared to discuss the effect of air permeability on stability of the supersonic parachute. The numerical results show that aerodynamic moment coefficient of the system with air permeability has larger oscillation amplitude and value than that without air permeability. This method can be developed as a potential method to select the supersonic parachute initially.\",\"PeriodicalId\":51910,\"journal\":{\"name\":\"Aviation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/aviation.2021.15131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2021.15131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
EFFECT OF AIR PERMEABILITY ON STABILITY OF SUPERSONIC PARACHUTE
A compressible air permeability model is developed to simulate the aerodynamic performance of the supersonic porous canopy. And a single-degree-of-freedom model is applied to analyse the static stability of the parachute. By using this method, the flow structure of the parachute system with big attack angle is obtained. The aerodynamic moment coefficients of porous and nonporous canopies are compared to discuss the effect of air permeability on stability of the supersonic parachute. The numerical results show that aerodynamic moment coefficient of the system with air permeability has larger oscillation amplitude and value than that without air permeability. This method can be developed as a potential method to select the supersonic parachute initially.
期刊介绍:
CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops