J. Nordine, David Fortus, Y. Lehavi, K. Neumann, J. Krajcik
{"title":"对系统之间的能源转移建模,以支持使用中的能源知识","authors":"J. Nordine, David Fortus, Y. Lehavi, K. Neumann, J. Krajcik","doi":"10.1080/03057267.2018.1598048","DOIUrl":null,"url":null,"abstract":"ABSTRACT School instruction is critical for helping students use energy as a lens for making sense of phenomena, however, students often struggle to see the usefulness of energy analysis for interpreting the world around them. One reason for this may be an over-reliance on the idea of energy forms in introductory energy instruction, which may unintentionally suppress, rather than prompt, insights into how and why phenomena occur. We argue that an approach to energy instruction that emphasizes energy transfers between systems, and does not require the idea of energy forms, provides students with a more consistent and useful set of tools for interpreting phenomena. Such a perspective requires connecting the energy concept to the notion that fields, which mediate interaction-at-a-distance, are a real physical system that can transfer energy – an idea that is rarely presented in middle school science. We outline an instructional approach in which middle school students learn to interpret phenomena by modelling energy transfers between systems of interacting objects and fields. We argue that this approach presents a more physically accurate picture of energy, helps align energy instruction across disciplines, and supports students in seeing the value of energy as a lens for making sense of phenomena.","PeriodicalId":49262,"journal":{"name":"Studies in Science Education","volume":"54 1","pages":"177 - 206"},"PeriodicalIF":4.7000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03057267.2018.1598048","citationCount":"21","resultStr":"{\"title\":\"Modelling energy transfers between systems to support energy knowledge in use\",\"authors\":\"J. Nordine, David Fortus, Y. Lehavi, K. Neumann, J. Krajcik\",\"doi\":\"10.1080/03057267.2018.1598048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT School instruction is critical for helping students use energy as a lens for making sense of phenomena, however, students often struggle to see the usefulness of energy analysis for interpreting the world around them. One reason for this may be an over-reliance on the idea of energy forms in introductory energy instruction, which may unintentionally suppress, rather than prompt, insights into how and why phenomena occur. We argue that an approach to energy instruction that emphasizes energy transfers between systems, and does not require the idea of energy forms, provides students with a more consistent and useful set of tools for interpreting phenomena. Such a perspective requires connecting the energy concept to the notion that fields, which mediate interaction-at-a-distance, are a real physical system that can transfer energy – an idea that is rarely presented in middle school science. We outline an instructional approach in which middle school students learn to interpret phenomena by modelling energy transfers between systems of interacting objects and fields. We argue that this approach presents a more physically accurate picture of energy, helps align energy instruction across disciplines, and supports students in seeing the value of energy as a lens for making sense of phenomena.\",\"PeriodicalId\":49262,\"journal\":{\"name\":\"Studies in Science Education\",\"volume\":\"54 1\",\"pages\":\"177 - 206\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/03057267.2018.1598048\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Science Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/03057267.2018.1598048\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/03057267.2018.1598048","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Modelling energy transfers between systems to support energy knowledge in use
ABSTRACT School instruction is critical for helping students use energy as a lens for making sense of phenomena, however, students often struggle to see the usefulness of energy analysis for interpreting the world around them. One reason for this may be an over-reliance on the idea of energy forms in introductory energy instruction, which may unintentionally suppress, rather than prompt, insights into how and why phenomena occur. We argue that an approach to energy instruction that emphasizes energy transfers between systems, and does not require the idea of energy forms, provides students with a more consistent and useful set of tools for interpreting phenomena. Such a perspective requires connecting the energy concept to the notion that fields, which mediate interaction-at-a-distance, are a real physical system that can transfer energy – an idea that is rarely presented in middle school science. We outline an instructional approach in which middle school students learn to interpret phenomena by modelling energy transfers between systems of interacting objects and fields. We argue that this approach presents a more physically accurate picture of energy, helps align energy instruction across disciplines, and supports students in seeing the value of energy as a lens for making sense of phenomena.
期刊介绍:
The central aim of Studies in Science Education is to publish review articles of the highest quality which provide analytical syntheses of research into key topics and issues in science education. In addressing this aim, the Editor and Editorial Advisory Board, are guided by a commitment to:
maintaining and developing the highest standards of scholarship associated with the journal;
publishing articles from as wide a range of authors as possible, in relation both to professional background and country of origin;
publishing articles which serve both to consolidate and reflect upon existing fields of study and to promote new areas for research activity.
Studies in Science Education will be of interest to all those involved in science education including: science education researchers, doctoral and masters students; science teachers at elementary, high school and university levels; science education policy makers; science education curriculum developers and text book writers.
Articles featured in Studies in Science Education have been made available either following invitation from the Editor or through potential contributors offering pieces. Given the substantial nature of the review articles, the Editor is willing to give informal feedback on the suitability of proposals though all contributions, whether invited or not, are subject to full peer review. A limited number of books of special interest and concern to those involved in science education are normally reviewed in each volume.