船用混合动力系统的研究

Q3 Engineering
T. Sasilatha, D. Lakshmi, J. Vaijayanthimala, R. K. Padmashini, S. Priya, J. Padmapriya, K. K. Kumari
{"title":"船用混合动力系统的研究","authors":"T. Sasilatha, D. Lakshmi, J. Vaijayanthimala, R. K. Padmashini, S. Priya, J. Padmapriya, K. K. Kumari","doi":"10.37394/232016.2022.17.21","DOIUrl":null,"url":null,"abstract":"Today’s Marine industries are undergoing transformation because of rapid growth of advancement in the field of automation. Shipping industries use hybrid propulsion systems to de-carbonize and orient the path towards zero emission. The renewable energy supply (RES) is utilized by reducing the dependence on imported conventional fossil fuels; greenhouse gas emissions produced by the usage of fossil fuels are reduced. Renewable green energy is used to generate power at the distribution level. Energy sources are distributed around the world. The utility's hybrid (wind/solar) power system has proven to be a reliable source of energy. In this article, PV and wind (hybrid) power used for marine applications with the reduction of fuel consumption is proposed. The hybrid buck boost converter used for regulating DC output voltage. A multi-level H bridge inverter between DC-DC converter and load provides the load's ac voltage requirement in hybrid systems. For a given output waveform quality, MLI topology provide lower THD and EMI output, higher efficiency and better output waveform. In order to design a multilevel inverter, a cascaded H-Bridge structure was adopted. PWM (Pulse Width Modulation) techniques enable the operation of Cascaded H Bridges to generate an approximate sine wave output from a multilayer inverter. To improve the hybrid system's performance, output of converter is supplied to the thirteen level H bridge inverter. This combination can maintain the appropriate voltage to load ratio. Voltage profile is improved by using H-bridge multilevel inverter. The proposed framework is re-enacted utilizing MATLAB/Simulink.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Hybrid Power System for Marine Applications\",\"authors\":\"T. Sasilatha, D. Lakshmi, J. Vaijayanthimala, R. K. Padmashini, S. Priya, J. Padmapriya, K. K. Kumari\",\"doi\":\"10.37394/232016.2022.17.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s Marine industries are undergoing transformation because of rapid growth of advancement in the field of automation. Shipping industries use hybrid propulsion systems to de-carbonize and orient the path towards zero emission. The renewable energy supply (RES) is utilized by reducing the dependence on imported conventional fossil fuels; greenhouse gas emissions produced by the usage of fossil fuels are reduced. Renewable green energy is used to generate power at the distribution level. Energy sources are distributed around the world. The utility's hybrid (wind/solar) power system has proven to be a reliable source of energy. In this article, PV and wind (hybrid) power used for marine applications with the reduction of fuel consumption is proposed. The hybrid buck boost converter used for regulating DC output voltage. A multi-level H bridge inverter between DC-DC converter and load provides the load's ac voltage requirement in hybrid systems. For a given output waveform quality, MLI topology provide lower THD and EMI output, higher efficiency and better output waveform. In order to design a multilevel inverter, a cascaded H-Bridge structure was adopted. PWM (Pulse Width Modulation) techniques enable the operation of Cascaded H Bridges to generate an approximate sine wave output from a multilayer inverter. To improve the hybrid system's performance, output of converter is supplied to the thirteen level H bridge inverter. This combination can maintain the appropriate voltage to load ratio. Voltage profile is improved by using H-bridge multilevel inverter. The proposed framework is re-enacted utilizing MATLAB/Simulink.\",\"PeriodicalId\":38993,\"journal\":{\"name\":\"WSEAS Transactions on Power Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232016.2022.17.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2022.17.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

由于自动化领域的进步迅速增长,今天的海洋工业正在经历转型。航运业使用混合动力推进系统来脱碳,并朝着零排放的方向发展。利用可再生能源供应,减少对进口常规化石燃料的依赖;减少使用化石燃料产生的温室气体排放。可再生绿色能源用于配电层面的发电。能源分布在世界各地。该公司的混合(风能/太阳能)电力系统已被证明是一种可靠的能源来源。在这篇文章中,光伏和风能(混合)电力用于船舶应用与减少燃料消耗提出。用于调节直流输出电压的混合型降压升压变换器。在混合系统中,DC-DC变换器和负载之间的多级H桥逆变器提供了负载的交流电压要求。对于给定的输出波形质量,MLI拓扑提供更低的THD和EMI输出,更高的效率和更好的输出波形。为了设计一个多电平逆变器,采用了级联h桥结构。PWM(脉冲宽度调制)技术使级联H桥的操作能够从多层逆变器产生近似的正弦波输出。为了提高混合系统的性能,变换器的输出被提供给十三电平H桥逆变器。这种组合可以保持适当的电压负载比。采用h桥型多电平逆变器改善了电压分布。利用MATLAB/Simulink对所提出的框架进行了重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Hybrid Power System for Marine Applications
Today’s Marine industries are undergoing transformation because of rapid growth of advancement in the field of automation. Shipping industries use hybrid propulsion systems to de-carbonize and orient the path towards zero emission. The renewable energy supply (RES) is utilized by reducing the dependence on imported conventional fossil fuels; greenhouse gas emissions produced by the usage of fossil fuels are reduced. Renewable green energy is used to generate power at the distribution level. Energy sources are distributed around the world. The utility's hybrid (wind/solar) power system has proven to be a reliable source of energy. In this article, PV and wind (hybrid) power used for marine applications with the reduction of fuel consumption is proposed. The hybrid buck boost converter used for regulating DC output voltage. A multi-level H bridge inverter between DC-DC converter and load provides the load's ac voltage requirement in hybrid systems. For a given output waveform quality, MLI topology provide lower THD and EMI output, higher efficiency and better output waveform. In order to design a multilevel inverter, a cascaded H-Bridge structure was adopted. PWM (Pulse Width Modulation) techniques enable the operation of Cascaded H Bridges to generate an approximate sine wave output from a multilayer inverter. To improve the hybrid system's performance, output of converter is supplied to the thirteen level H bridge inverter. This combination can maintain the appropriate voltage to load ratio. Voltage profile is improved by using H-bridge multilevel inverter. The proposed framework is re-enacted utilizing MATLAB/Simulink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Power Systems
WSEAS Transactions on Power Systems Engineering-Industrial and Manufacturing Engineering
CiteScore
1.10
自引率
0.00%
发文量
36
期刊介绍: WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信