V. Řezáčová, M. Řezáč, Zuzana Líblová, Tereza Michalová, P. Heneberg
{"title":"在暴露于菊科最近的入侵者后,丛枝菌根真菌对本地植物和早期入侵者的稳定定殖","authors":"V. Řezáčová, M. Řezáč, Zuzana Líblová, Tereza Michalová, P. Heneberg","doi":"10.1017/inp.2021.17","DOIUrl":null,"url":null,"abstract":"Abstract Arbuscular mycorrhizal fungi (AMF, Glomeromycota) are globally distributed symbionts of plant roots. Relationships with arbuscular mycorrhizae can provide crucial support for the establishment of any plant in an unfavorable environment. We hypothesized that invasions of neophytes are associated with changes in the colonization of native plants and early invaders (archeophytes) by AMF. We examined changes in AMF colonization in yarrow (Achillea millefolium L.) and wild carrot (Daucus carota L.) (native plants) and tansy (Tanacetum vulgare L.) and false oatgrass [Arrhenatherum elatius (L.) P. Beauv. ex J. Presl & C. Presl] (archeophytes) in response to the invasion of four neophytes from the Asteraceae family, namely great globethistle (Echinops sphaerocephalus L.), New York aster [Symphyotrichum novi-belgii (L.) G. L. Nesom agg.], annual fleabane [Erigeron annuus (L.) Pers.], and Canada goldenrod (Solidago canadensis L.). We found that the AMF colonization of the Asteraceae neophytes was high in the studied monodominant invasions, and the AMF colonization of the neophytes was higher than or equal to that of the studied native plants and archeophytes. Changes in plant dominance did not serve as predictors of the extent of AMF colonization of the native plants and archeophytes despite the invaded plots being associated with strong changes in the availability of primary and secondary mineral nutrients. The absence of a response of AMF colonization of native and archeophyte plant species to the invasion of neophytes suggests that AMF are passengers, rather than drivers, in the course of Asteraceae invasions in central European environments.","PeriodicalId":14470,"journal":{"name":"Invasive Plant Science and Management","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stable colonization of native plants and early invaders by arbuscular mycorrhizal fungi after exposure to recent invaders from the Asteraceae family\",\"authors\":\"V. Řezáčová, M. Řezáč, Zuzana Líblová, Tereza Michalová, P. Heneberg\",\"doi\":\"10.1017/inp.2021.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Arbuscular mycorrhizal fungi (AMF, Glomeromycota) are globally distributed symbionts of plant roots. Relationships with arbuscular mycorrhizae can provide crucial support for the establishment of any plant in an unfavorable environment. We hypothesized that invasions of neophytes are associated with changes in the colonization of native plants and early invaders (archeophytes) by AMF. We examined changes in AMF colonization in yarrow (Achillea millefolium L.) and wild carrot (Daucus carota L.) (native plants) and tansy (Tanacetum vulgare L.) and false oatgrass [Arrhenatherum elatius (L.) P. Beauv. ex J. Presl & C. Presl] (archeophytes) in response to the invasion of four neophytes from the Asteraceae family, namely great globethistle (Echinops sphaerocephalus L.), New York aster [Symphyotrichum novi-belgii (L.) G. L. Nesom agg.], annual fleabane [Erigeron annuus (L.) Pers.], and Canada goldenrod (Solidago canadensis L.). We found that the AMF colonization of the Asteraceae neophytes was high in the studied monodominant invasions, and the AMF colonization of the neophytes was higher than or equal to that of the studied native plants and archeophytes. Changes in plant dominance did not serve as predictors of the extent of AMF colonization of the native plants and archeophytes despite the invaded plots being associated with strong changes in the availability of primary and secondary mineral nutrients. The absence of a response of AMF colonization of native and archeophyte plant species to the invasion of neophytes suggests that AMF are passengers, rather than drivers, in the course of Asteraceae invasions in central European environments.\",\"PeriodicalId\":14470,\"journal\":{\"name\":\"Invasive Plant Science and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invasive Plant Science and Management\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/inp.2021.17\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invasive Plant Science and Management","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/inp.2021.17","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Stable colonization of native plants and early invaders by arbuscular mycorrhizal fungi after exposure to recent invaders from the Asteraceae family
Abstract Arbuscular mycorrhizal fungi (AMF, Glomeromycota) are globally distributed symbionts of plant roots. Relationships with arbuscular mycorrhizae can provide crucial support for the establishment of any plant in an unfavorable environment. We hypothesized that invasions of neophytes are associated with changes in the colonization of native plants and early invaders (archeophytes) by AMF. We examined changes in AMF colonization in yarrow (Achillea millefolium L.) and wild carrot (Daucus carota L.) (native plants) and tansy (Tanacetum vulgare L.) and false oatgrass [Arrhenatherum elatius (L.) P. Beauv. ex J. Presl & C. Presl] (archeophytes) in response to the invasion of four neophytes from the Asteraceae family, namely great globethistle (Echinops sphaerocephalus L.), New York aster [Symphyotrichum novi-belgii (L.) G. L. Nesom agg.], annual fleabane [Erigeron annuus (L.) Pers.], and Canada goldenrod (Solidago canadensis L.). We found that the AMF colonization of the Asteraceae neophytes was high in the studied monodominant invasions, and the AMF colonization of the neophytes was higher than or equal to that of the studied native plants and archeophytes. Changes in plant dominance did not serve as predictors of the extent of AMF colonization of the native plants and archeophytes despite the invaded plots being associated with strong changes in the availability of primary and secondary mineral nutrients. The absence of a response of AMF colonization of native and archeophyte plant species to the invasion of neophytes suggests that AMF are passengers, rather than drivers, in the course of Asteraceae invasions in central European environments.
期刊介绍:
Invasive Plant Science and Management (IPSM) is an online peer-reviewed journal focusing on fundamental and applied research on invasive plant biology, ecology, management, and restoration of invaded non-crop areas, and on other aspects relevant to invasive species, including educational activities and policy issues. Topics include the biology and ecology of invasive plants in rangeland, prairie, pasture, wildland, forestry, riparian, wetland, aquatic, recreational, rights-of-ways, and other non-crop (parks, preserves, natural areas) settings; genetics of invasive plants; social, ecological, and economic impacts of invasive plants and their management; design, efficacy, and integration of control tools; land restoration and rehabilitation; effects of management on soil, air, water, and wildlife; education, extension, and outreach methods and resources; technology and product reports; mapping and remote sensing, inventory and monitoring; technology transfer tools; case study reports; and regulatory issues.