奥氏体不锈钢抗塑性浸裂:机理

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
P. Yu, J. Morrow, S. Kou
{"title":"奥氏体不锈钢抗塑性浸裂:机理","authors":"P. Yu, J. Morrow, S. Kou","doi":"10.29391/2021.100.026","DOIUrl":null,"url":null,"abstract":"In Ni-based alloys, precipitates that form along grain boundaries (GBs) during terminal solidification have been shown to pin GBs and resist GB sliding, which can cause ductility-dip cracking (DDC). As a result, it is often suggested that the stainless steel skeletal/lacy  in a  matrix resists DDC because it pins GBs. In the present study, austenitic stainless steels 304, 316, 310, and 321 were quenched with liquid Wood’s metal (75˚C) during welding. Quenching captured the elevated-temperature micro-structure and simultaneously induced cracking, thus revealing the mechanisms of the resistance to DDC. In addition, DDC was much higher in 310 than 304, 316, and 321, which is consistent with results of conventional tests. Both 304 and 316 solidified as columnar  grains, with continuous  formed along GBs soon after solidification to resist DDC along the GBs. 321 solidified as equiaxed grains of  instead of columnar, and the tortuous GBs associated with equiaxed grains resisted DDC. 310, however, solidified as coarse, straight  grains with little  along the GBs, and solidification GBs migrated to become locally straight. The resulting GBs were long, straight, and naked, which is ideal for DDC. In 304, 316, or 321, skeletal/lacy  in a  matrix did not exist in the fusion zone near the mushy zone, where DDC occurs. This proved skeletal/lacy  cannot resist DDC as often suggested. Instead, the present study identified two new mechanisms of resistance to DDC: 1) formation of continuous or nearly continuous  along boundaries of columnar  grains and 2) solidification as equiaxed  grains.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resistance of Austenitic Stainless Steels to Ductility-Dip Cracking: Mechanisms\",\"authors\":\"P. Yu, J. Morrow, S. Kou\",\"doi\":\"10.29391/2021.100.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Ni-based alloys, precipitates that form along grain boundaries (GBs) during terminal solidification have been shown to pin GBs and resist GB sliding, which can cause ductility-dip cracking (DDC). As a result, it is often suggested that the stainless steel skeletal/lacy  in a  matrix resists DDC because it pins GBs. In the present study, austenitic stainless steels 304, 316, 310, and 321 were quenched with liquid Wood’s metal (75˚C) during welding. Quenching captured the elevated-temperature micro-structure and simultaneously induced cracking, thus revealing the mechanisms of the resistance to DDC. In addition, DDC was much higher in 310 than 304, 316, and 321, which is consistent with results of conventional tests. Both 304 and 316 solidified as columnar  grains, with continuous  formed along GBs soon after solidification to resist DDC along the GBs. 321 solidified as equiaxed grains of  instead of columnar, and the tortuous GBs associated with equiaxed grains resisted DDC. 310, however, solidified as coarse, straight  grains with little  along the GBs, and solidification GBs migrated to become locally straight. The resulting GBs were long, straight, and naked, which is ideal for DDC. In 304, 316, or 321, skeletal/lacy  in a  matrix did not exist in the fusion zone near the mushy zone, where DDC occurs. This proved skeletal/lacy  cannot resist DDC as often suggested. Instead, the present study identified two new mechanisms of resistance to DDC: 1) formation of continuous or nearly continuous  along boundaries of columnar  grains and 2) solidification as equiaxed  grains.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2021.100.026\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2021.100.026","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

在镍基合金中,在最终凝固过程中沿晶界(GBs)形成的沉淀物已被证明可以固定晶界并阻止晶界滑动,这可能导致延性浸裂(DDC)。因此,人们经常认为不锈钢骨架/花边 在 矩阵抵抗DDC,因为它引脚GB。在本研究中,奥氏体不锈钢304、316、310和321在焊接过程中用液态Wood金属(75˚C)淬火。淬火捕获了高温下的微观结构,同时引发了裂纹,从而揭示了抗DDC的机制。此外,310的DDC远高于304、316和321,这与传统测试的结果一致。304和316均固化为柱状 晶粒,连续 在固化后不久沿着GBs形成以抵抗沿着GBs的DDC。321凝固为 而不是柱状,并且与等轴晶粒相关的弯曲晶界抵抗DDC。310,然而,固化为粗糙的、直的 颗粒很少 并且凝固的晶界迁移为局部直的。由此产生的GB是长的、直的和裸露的,这是DDC的理想选择。在304、316或321中,骨骼/花边 在 在发生DDC的糊状区附近的融合区中不存在基质。这被证明是骨骼/花边 不能像通常建议的那样抵抗DDC。相反,本研究确定了对DDC抗性的两种新机制:1)形成连续或几乎连续的 沿柱状边界 晶粒和2)等轴凝固 谷物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resistance of Austenitic Stainless Steels to Ductility-Dip Cracking: Mechanisms
In Ni-based alloys, precipitates that form along grain boundaries (GBs) during terminal solidification have been shown to pin GBs and resist GB sliding, which can cause ductility-dip cracking (DDC). As a result, it is often suggested that the stainless steel skeletal/lacy  in a  matrix resists DDC because it pins GBs. In the present study, austenitic stainless steels 304, 316, 310, and 321 were quenched with liquid Wood’s metal (75˚C) during welding. Quenching captured the elevated-temperature micro-structure and simultaneously induced cracking, thus revealing the mechanisms of the resistance to DDC. In addition, DDC was much higher in 310 than 304, 316, and 321, which is consistent with results of conventional tests. Both 304 and 316 solidified as columnar  grains, with continuous  formed along GBs soon after solidification to resist DDC along the GBs. 321 solidified as equiaxed grains of  instead of columnar, and the tortuous GBs associated with equiaxed grains resisted DDC. 310, however, solidified as coarse, straight  grains with little  along the GBs, and solidification GBs migrated to become locally straight. The resulting GBs were long, straight, and naked, which is ideal for DDC. In 304, 316, or 321, skeletal/lacy  in a  matrix did not exist in the fusion zone near the mushy zone, where DDC occurs. This proved skeletal/lacy  cannot resist DDC as often suggested. Instead, the present study identified two new mechanisms of resistance to DDC: 1) formation of continuous or nearly continuous  along boundaries of columnar  grains and 2) solidification as equiaxed  grains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信