{"title":"量子测量理论的指针","authors":"Jay Lawrence","doi":"10.1007/s10701-023-00707-9","DOIUrl":null,"url":null,"abstract":"<div><p>In the iconic measurements of atomic spin-1/2 or photon polarization, one employs two separate noninteracting detectors. Each detector is binary, registering the presence or absence of the atom or the photon. For measurements on a <i>d</i>-state particle, we recast the standard von Neumann measurement formalism by replacing the familiar pointer variable with an array of such detectors, one for each of the <i>d</i> possible outcomes. We show that the unitary dynamics of the pre-measurement process restricts the detector outputs to the subspace of single outcomes, so that the pointer emerges from the apparatus. We propose a physical extension of this apparatus which replaces each detector with an ancilla qubit coupled to a readout device. This explicitly separates the pointer into distinct quantum and (effectively) classical parts, and delays the quantum to classical transition. As a result, one not only recovers the collapse scenario of an ordinary apparatus, but one can also observe a superposition of the quantum pointer states.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointers for Quantum Measurement Theory\",\"authors\":\"Jay Lawrence\",\"doi\":\"10.1007/s10701-023-00707-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the iconic measurements of atomic spin-1/2 or photon polarization, one employs two separate noninteracting detectors. Each detector is binary, registering the presence or absence of the atom or the photon. For measurements on a <i>d</i>-state particle, we recast the standard von Neumann measurement formalism by replacing the familiar pointer variable with an array of such detectors, one for each of the <i>d</i> possible outcomes. We show that the unitary dynamics of the pre-measurement process restricts the detector outputs to the subspace of single outcomes, so that the pointer emerges from the apparatus. We propose a physical extension of this apparatus which replaces each detector with an ancilla qubit coupled to a readout device. This explicitly separates the pointer into distinct quantum and (effectively) classical parts, and delays the quantum to classical transition. As a result, one not only recovers the collapse scenario of an ordinary apparatus, but one can also observe a superposition of the quantum pointer states.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-023-00707-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00707-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
In the iconic measurements of atomic spin-1/2 or photon polarization, one employs two separate noninteracting detectors. Each detector is binary, registering the presence or absence of the atom or the photon. For measurements on a d-state particle, we recast the standard von Neumann measurement formalism by replacing the familiar pointer variable with an array of such detectors, one for each of the d possible outcomes. We show that the unitary dynamics of the pre-measurement process restricts the detector outputs to the subspace of single outcomes, so that the pointer emerges from the apparatus. We propose a physical extension of this apparatus which replaces each detector with an ancilla qubit coupled to a readout device. This explicitly separates the pointer into distinct quantum and (effectively) classical parts, and delays the quantum to classical transition. As a result, one not only recovers the collapse scenario of an ordinary apparatus, but one can also observe a superposition of the quantum pointer states.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.