Y. Ohno, K. Aoyagi, K. Arakita, Y. Doi, M. Kondo, S. Banno, K. Kasahara, Taku Ogawa, H. Kato, R. Hase, Fumihiro Kashizaki, Koichi Nishi, T. Kamio, Keiko Mitamura, N. Ikeda, A. Nakagawa, Y. Fujisawa, Akira Taniguchi, Hirotaka Ikeda, Hidekazu Hattori, K. Murayama, H. Toyama
{"title":"新开发的COVID-19肺炎人工智能算法:定量CT纹理分析在预测favipiravir治疗效果中的应用","authors":"Y. Ohno, K. Aoyagi, K. Arakita, Y. Doi, M. Kondo, S. Banno, K. Kasahara, Taku Ogawa, H. Kato, R. Hase, Fumihiro Kashizaki, Koichi Nishi, T. Kamio, Keiko Mitamura, N. Ikeda, A. Nakagawa, Y. Fujisawa, Akira Taniguchi, Hirotaka Ikeda, Hidekazu Hattori, K. Murayama, H. Toyama","doi":"10.1007/s11604-022-01270-5","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":51226,"journal":{"name":"Japanese Journal of Radiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Newly developed artificial intelligence algorithm for COVID-19 pneumonia: utility of quantitative CT texture analysis for prediction of favipiravir treatment effect\",\"authors\":\"Y. Ohno, K. Aoyagi, K. Arakita, Y. Doi, M. Kondo, S. Banno, K. Kasahara, Taku Ogawa, H. Kato, R. Hase, Fumihiro Kashizaki, Koichi Nishi, T. Kamio, Keiko Mitamura, N. Ikeda, A. Nakagawa, Y. Fujisawa, Akira Taniguchi, Hirotaka Ikeda, Hidekazu Hattori, K. Murayama, H. Toyama\",\"doi\":\"10.1007/s11604-022-01270-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":51226,\"journal\":{\"name\":\"Japanese Journal of Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11604-022-01270-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-022-01270-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Newly developed artificial intelligence algorithm for COVID-19 pneumonia: utility of quantitative CT texture analysis for prediction of favipiravir treatment effect
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.