MXene改性琼脂/聚氨酯水凝胶弹性体可调吸水性修复材料的研究

IF 3.2 3区 化学 Q2 POLYMER SCIENCE
e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0035
Jinbo Liu, Xue-zhi Tang, Xiaotong Chen, Guoqing Wang
{"title":"MXene改性琼脂/聚氨酯水凝胶弹性体可调吸水性修复材料的研究","authors":"Jinbo Liu, Xue-zhi Tang, Xiaotong Chen, Guoqing Wang","doi":"10.1515/epoly-2023-0035","DOIUrl":null,"url":null,"abstract":"Abstract The study of repairing materials is of paramount importance, considering that damage during usage can significantly impact performance and bring inconvenience during maintenance work. One highly sought-after material is water-swellable elastomers, known for their effect in sealing and repairing damaged materials. In this study, agar/polyurethane dual-network hydrogel elastomers were prepared, which were further modified by MXene. The material exhibits a uniform and flat surface, along with a rich pore-filled internal structure. It showcases excellent thermal stability, good tensile strength retention, and a controllable low swelling rate (SR) upon water absorption. The performance of the material can be regulated by the MXene content. In addition, the “water absorption–drying–water absorption” cycle effectively controls the reduction of the SR and gradually increases the tensile strength. All samples demonstrated exceptional photothermal conversion efficiency, stability, and durability, with the maximum conversion temperature increasing with the MXene content. The scratch repair experiments demonstrated the remarkable potential of these materials for photothermal conversion-assisted repair. These materials can be adapted as auxiliary restoration materials in water bodies and various application environments, making them ideal for repair and restoration purposes.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of MXene-modified agar/polyurethane hydrogel elastomeric repair materials with tunable water absorption\",\"authors\":\"Jinbo Liu, Xue-zhi Tang, Xiaotong Chen, Guoqing Wang\",\"doi\":\"10.1515/epoly-2023-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study of repairing materials is of paramount importance, considering that damage during usage can significantly impact performance and bring inconvenience during maintenance work. One highly sought-after material is water-swellable elastomers, known for their effect in sealing and repairing damaged materials. In this study, agar/polyurethane dual-network hydrogel elastomers were prepared, which were further modified by MXene. The material exhibits a uniform and flat surface, along with a rich pore-filled internal structure. It showcases excellent thermal stability, good tensile strength retention, and a controllable low swelling rate (SR) upon water absorption. The performance of the material can be regulated by the MXene content. In addition, the “water absorption–drying–water absorption” cycle effectively controls the reduction of the SR and gradually increases the tensile strength. All samples demonstrated exceptional photothermal conversion efficiency, stability, and durability, with the maximum conversion temperature increasing with the MXene content. The scratch repair experiments demonstrated the remarkable potential of these materials for photothermal conversion-assisted repair. These materials can be adapted as auxiliary restoration materials in water bodies and various application environments, making them ideal for repair and restoration purposes.\",\"PeriodicalId\":11806,\"journal\":{\"name\":\"e-Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e-Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/epoly-2023-0035\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0035","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

修理材料的研究是至关重要的,因为在使用过程中损坏会严重影响性能,给维修工作带来不便。一种非常受欢迎的材料是可遇水膨胀弹性体,以其密封和修复损坏材料的效果而闻名。本研究制备了琼脂/聚氨酯双网状水凝胶弹性体,并用MXene对其进行改性。该材料具有均匀平坦的表面,以及丰富的孔隙填充的内部结构。它具有优异的热稳定性,良好的拉伸强度保持,以及可控制的低吸水膨胀率(SR)。MXene的含量可以调节材料的性能。此外,“吸水-干燥-吸水”循环有效地控制了SR的降低,并逐渐提高抗拉强度。所有样品均表现出优异的光热转换效率、稳定性和耐久性,最高转换温度随MXene含量的增加而增加。划痕修复实验证明了这些材料在光热转换辅助修复方面的显著潜力。这些材料可以在水体和各种应用环境中作为辅助修复材料,是修复和修复的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of MXene-modified agar/polyurethane hydrogel elastomeric repair materials with tunable water absorption
Abstract The study of repairing materials is of paramount importance, considering that damage during usage can significantly impact performance and bring inconvenience during maintenance work. One highly sought-after material is water-swellable elastomers, known for their effect in sealing and repairing damaged materials. In this study, agar/polyurethane dual-network hydrogel elastomers were prepared, which were further modified by MXene. The material exhibits a uniform and flat surface, along with a rich pore-filled internal structure. It showcases excellent thermal stability, good tensile strength retention, and a controllable low swelling rate (SR) upon water absorption. The performance of the material can be regulated by the MXene content. In addition, the “water absorption–drying–water absorption” cycle effectively controls the reduction of the SR and gradually increases the tensile strength. All samples demonstrated exceptional photothermal conversion efficiency, stability, and durability, with the maximum conversion temperature increasing with the MXene content. The scratch repair experiments demonstrated the remarkable potential of these materials for photothermal conversion-assisted repair. These materials can be adapted as auxiliary restoration materials in water bodies and various application environments, making them ideal for repair and restoration purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信