{"title":"太赫兹频率下共振增强声子交换磁振子相互作用的研究","authors":"Tudor-Gabriel Mocioi, Antonia Ghita, V. Temnov","doi":"10.3390/magnetochemistry9070184","DOIUrl":null,"url":null,"abstract":"Using valid experimental parameters, we quantify the magnitude of resonantly phonon-driven precession of exchange magnons in freestanding ferromagnetic nickel thin films on their thickness L. Analytical solutions of acoustically driven equations for magnon oscillators display a nonmonotonous dependence of the peak magnetization precession on the film thickness. It is explained by different L-dependence of multiple prefactors entering in the expression for the total magnetization dynamics. Depending on the ratio of acoustic and magnetic (Gilbert) damping constants, the magnetization precession is shown to be amplified by a Q-factor of either the phonon or the magnon resonance. The increase in the phonon mode amplitude for thinner membranes is also found to be significant. Focusing on the magnetization dynamics excited by the two first acoustic eigenmodes with p=1 and p=2, we predict the optimum thicknesses of nickel membranes to achieve large amplitude magnetization precession at multi 100 GHz frequencies at reasonably low values of an external magnetic field. By extending the study to the case of Ni-Si bilayers, we show that these resonances are achievable at even higher frequencies, approaching the THz range.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Resonantly Enhanced Acoustic Phonon-Exchange Magnon Interactions at THz Frequencies\",\"authors\":\"Tudor-Gabriel Mocioi, Antonia Ghita, V. Temnov\",\"doi\":\"10.3390/magnetochemistry9070184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using valid experimental parameters, we quantify the magnitude of resonantly phonon-driven precession of exchange magnons in freestanding ferromagnetic nickel thin films on their thickness L. Analytical solutions of acoustically driven equations for magnon oscillators display a nonmonotonous dependence of the peak magnetization precession on the film thickness. It is explained by different L-dependence of multiple prefactors entering in the expression for the total magnetization dynamics. Depending on the ratio of acoustic and magnetic (Gilbert) damping constants, the magnetization precession is shown to be amplified by a Q-factor of either the phonon or the magnon resonance. The increase in the phonon mode amplitude for thinner membranes is also found to be significant. Focusing on the magnetization dynamics excited by the two first acoustic eigenmodes with p=1 and p=2, we predict the optimum thicknesses of nickel membranes to achieve large amplitude magnetization precession at multi 100 GHz frequencies at reasonably low values of an external magnetic field. By extending the study to the case of Ni-Si bilayers, we show that these resonances are achievable at even higher frequencies, approaching the THz range.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9070184\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9070184","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Towards Resonantly Enhanced Acoustic Phonon-Exchange Magnon Interactions at THz Frequencies
Using valid experimental parameters, we quantify the magnitude of resonantly phonon-driven precession of exchange magnons in freestanding ferromagnetic nickel thin films on their thickness L. Analytical solutions of acoustically driven equations for magnon oscillators display a nonmonotonous dependence of the peak magnetization precession on the film thickness. It is explained by different L-dependence of multiple prefactors entering in the expression for the total magnetization dynamics. Depending on the ratio of acoustic and magnetic (Gilbert) damping constants, the magnetization precession is shown to be amplified by a Q-factor of either the phonon or the magnon resonance. The increase in the phonon mode amplitude for thinner membranes is also found to be significant. Focusing on the magnetization dynamics excited by the two first acoustic eigenmodes with p=1 and p=2, we predict the optimum thicknesses of nickel membranes to achieve large amplitude magnetization precession at multi 100 GHz frequencies at reasonably low values of an external magnetic field. By extending the study to the case of Ni-Si bilayers, we show that these resonances are achievable at even higher frequencies, approaching the THz range.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.