利用机器学习方法改进超宽带定位

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Che-Cheng Chang, Hong-Wen Wang, Yu-Xiang Zeng, Jin-Da Huang
{"title":"利用机器学习方法改进超宽带定位","authors":"Che-Cheng Chang, Hong-Wen Wang, Yu-Xiang Zeng, Jin-Da Huang","doi":"10.53106/160792642021092205008","DOIUrl":null,"url":null,"abstract":"An ultra-wideband (UWB) positioning system consists of at least three anchors and a tag. Via the UWB transceiver mounted on each device in the system, we can use some techniques to obtain the distance between each anchor and the tag. Then we can further realize the tag localization by some classic algorithms. However, in the real environment, the uncertain measurement may bring incorrect distance as well as positioning information. Therefore, in this research, we intend to reconsider the positioning issue by incorporating some machine learning approaches with uncertain measurement in the real environment. Particularly, we utilize the concept of machine learning for overall consideration instead of using a model to evaluate the uncertainty. The experimental results show that our method can be applied to different cases, and some interesting properties in the practical experiments are presented.","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"22 1","pages":"1019-1029"},"PeriodicalIF":0.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning Approaches to Improve Ultra-Wideband Positioning\",\"authors\":\"Che-Cheng Chang, Hong-Wen Wang, Yu-Xiang Zeng, Jin-Da Huang\",\"doi\":\"10.53106/160792642021092205008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultra-wideband (UWB) positioning system consists of at least three anchors and a tag. Via the UWB transceiver mounted on each device in the system, we can use some techniques to obtain the distance between each anchor and the tag. Then we can further realize the tag localization by some classic algorithms. However, in the real environment, the uncertain measurement may bring incorrect distance as well as positioning information. Therefore, in this research, we intend to reconsider the positioning issue by incorporating some machine learning approaches with uncertain measurement in the real environment. Particularly, we utilize the concept of machine learning for overall consideration instead of using a model to evaluate the uncertainty. The experimental results show that our method can be applied to different cases, and some interesting properties in the practical experiments are presented.\",\"PeriodicalId\":50172,\"journal\":{\"name\":\"Journal of Internet Technology\",\"volume\":\"22 1\",\"pages\":\"1019-1029\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642021092205008\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.53106/160792642021092205008","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

超宽带(UWB)定位系统由至少三个锚和一个标签组成。通过安装在系统中每个设备上的超宽带收发器,我们可以使用一些技术来获得每个锚点与标签之间的距离。然后通过一些经典算法进一步实现标签的定位。然而,在实际环境中,测量的不确定性会带来不正确的距离和定位信息。因此,在本研究中,我们打算通过在真实环境中结合一些具有不确定测量的机器学习方法来重新考虑定位问题。特别是,我们利用机器学习的概念进行整体考虑,而不是使用模型来评估不确定性。实验结果表明,该方法可以适用于不同的情况,并在实际实验中给出了一些有趣的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Machine Learning Approaches to Improve Ultra-Wideband Positioning
An ultra-wideband (UWB) positioning system consists of at least three anchors and a tag. Via the UWB transceiver mounted on each device in the system, we can use some techniques to obtain the distance between each anchor and the tag. Then we can further realize the tag localization by some classic algorithms. However, in the real environment, the uncertain measurement may bring incorrect distance as well as positioning information. Therefore, in this research, we intend to reconsider the positioning issue by incorporating some machine learning approaches with uncertain measurement in the real environment. Particularly, we utilize the concept of machine learning for overall consideration instead of using a model to evaluate the uncertainty. The experimental results show that our method can be applied to different cases, and some interesting properties in the practical experiments are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Technology
Journal of Internet Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
3.20
自引率
18.80%
发文量
112
审稿时长
13.8 months
期刊介绍: The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere. Topics of interest to JIT include but not limited to: Broadband Networks Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business) Network Management Network Operating System (NOS) Intelligent systems engineering Government or Staff Jobs Computerization National Information Policy Multimedia systems Network Behavior Modeling Wireless/Satellite Communication Digital Library Distance Learning Internet/WWW Applications Telecommunication Networks Security in Networks and Systems Cloud Computing Internet of Things (IoT) IPv6 related topics are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信