{"title":"同余-简单乘法幂等半环","authors":"Tomáš Kepka, Miroslav Korbelář, Günter Landsmann","doi":"10.1007/s00012-023-00807-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>S</i> be a multiplicatively idempotent congruence-simple semiring. We show that <span>\\(|S|=2\\)</span> if <i>S</i> has a multiplicatively absorbing element. We also prove that if <i>S</i> is finite then either <span>\\(|S|=2\\)</span> or <span>\\(S\\cong {{\\,\\textrm{End}\\,}}(L)\\)</span> or <span>\\(S^{op}\\cong {{\\,\\textrm{End}\\,}}(L)\\)</span> where <i>L</i> is the 2-element semilattice. It seems to be an open question, whether <i>S</i> can be infinite at all.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruence-simple multiplicatively idempotent semirings\",\"authors\":\"Tomáš Kepka, Miroslav Korbelář, Günter Landsmann\",\"doi\":\"10.1007/s00012-023-00807-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>S</i> be a multiplicatively idempotent congruence-simple semiring. We show that <span>\\\\(|S|=2\\\\)</span> if <i>S</i> has a multiplicatively absorbing element. We also prove that if <i>S</i> is finite then either <span>\\\\(|S|=2\\\\)</span> or <span>\\\\(S\\\\cong {{\\\\,\\\\textrm{End}\\\\,}}(L)\\\\)</span> or <span>\\\\(S^{op}\\\\cong {{\\\\,\\\\textrm{End}\\\\,}}(L)\\\\)</span> where <i>L</i> is the 2-element semilattice. It seems to be an open question, whether <i>S</i> can be infinite at all.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-023-00807-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00807-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let S be a multiplicatively idempotent congruence-simple semiring. We show that \(|S|=2\) if S has a multiplicatively absorbing element. We also prove that if S is finite then either \(|S|=2\) or \(S\cong {{\,\textrm{End}\,}}(L)\) or \(S^{op}\cong {{\,\textrm{End}\,}}(L)\) where L is the 2-element semilattice. It seems to be an open question, whether S can be infinite at all.
期刊介绍:
Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.